Menu Close

if-z-1-z-C-a-R-find-max-value-of-z-2-az-1-




Question Number 449 by 123456 last updated on 25/Jan/15
if ∣z∣=1,z∈C,a∈R  find max value of ∣z^2 +az−1∣
ifz∣=1,zC,aRfindmaxvalueofz2+az1
Answered by prakash jain last updated on 09/Jan/15
z=i  z^2 =−1  z^2 +az−1=−2+ai  ∣−2+ai∣=(√(4+a^2 ))
z=iz2=1z2+az1=2+ai2+ai∣=4+a2
Commented by prakash jain last updated on 09/Jan/15
z=x+iy  z^2 =x^2 −y^2 +i2xy  y=(√(1−x^2 ))  z^2 =2x^2 −1+2ix(√(1−x^2 ))  az=ax+ia(√(1−x^2 ))  z^2 +az−1=2x^2 −1+2ix(√(1−x^2 ))+ax+ia(√(1−x^2 ))−1  =(2x^2 +ax−2)+i(2x+a)(√(1−x^2 ))  ∣z^2 +az−1∣^2 =(2x^2 +ax−2)^2 +(2x+a)^2 (1−x^2 )  4x^4 +a^2 x^2 +4+4ax^3 −8x^2 −4ax+(4x^2 +4ax+a^2 )(1−x^2 )  =4−8x^2 +4x^2 +a^2   =a^2 +4−4x^2   Maximum value when x=0  and is given by   ∣z^2 +az−1∣=(√(a^2 +4))
z=x+iyz2=x2y2+i2xyy=1x2z2=2x21+2ix1x2az=ax+ia1x2z2+az1=2x21+2ix1x2+ax+ia1x21=(2x2+ax2)+i(2x+a)1x2z2+az12=(2x2+ax2)2+(2x+a)2(1x2)4x4+a2x2+4+4ax38x24ax+(4x2+4ax+a2)(1x2)=48x2+4x2+a2=a2+44x2Maximumvaluewhenx=0andisgivenbyz2+az1∣=a2+4

Leave a Reply

Your email address will not be published. Required fields are marked *