Menu Close

If-z-C-satisfies-z-3-z-3-2-then-maximum-possible-value-of-z-z-1-is-




Question Number 8721 by swapnil last updated on 24/Oct/16
If z∈C satisfies  ∣z^3 +z^(−3) ∣≤2  then maximum possible value of∣z+z^(−1) ∣is?
IfzCsatisfiesz3+z3∣⩽2thenmaximumpossiblevalueofz+z1is?
Commented by 123456 last updated on 24/Oct/16
∣z^3 +z^(−3) ∣≤2  z=e^(θι)   z^3 +z^(−3) =e^(3θι) +e^(−3θι) =2cos(3θ)⇒∣cos (3θ)∣≤1  z+z^(−1) =e^(θι) +e^(−θι) =2cos θ  cosh t=((e^t +e^(−t) )/2)  sinh t=((e^t −e^(−t) )/2)  e^(θι) =cos θ+ι sin θ   cosh (tι)=cos t  sinh (tι)=ιsin t  cos^2 θ+sin^2 θ=1  cosh^2 t−sinh^2 t=1
z3+z3∣⩽2z=eθιz3+z3=e3θι+e3θι=2cos(3θ)⇒∣cos(3θ)∣⩽1z+z1=eθι+eθι=2cosθcosht=et+et2sinht=etet2eθι=cosθ+ιsinθcosh(tι)=costsinh(tι)=ιsintcos2θ+sin2θ=1cosh2tsinh2t=1
Commented by prakash jain last updated on 24/Oct/16
z=re^(ιθ)   ∣z^3 +z^(−3) ∣=2r^3 ∣cos 3θ∣  ∣z+z^(−1) ∣=2r∣cos θ∣  θ=(π/6),3θ=(π/2)  ∣z^3 +z^(−3) ∣=0  ∣z+z^(−1) ∣=2rcos (π/6)=r(√3)  You can choose r.  ∣z^3 +z^(−3) ∣ will remain 0.  So there is no limit on ∣z+z^(−1) ∣
z=reιθz3+z3∣=2r3cos3θz+z1∣=2rcosθθ=π6,3θ=π2z3+z3∣=0z+z1∣=2rcosπ6=r3Youcanchooser.z3+z3willremain0.Sothereisnolimitonz+z1

Leave a Reply

Your email address will not be published. Required fields are marked *