Menu Close

if-z-e-z-1-n-0-B-n-z-n-n-1-calculate-B-0-B-1-B-2-B-3-B-4-2-prove-that-z-1-e-z-1-1-2-is-a-odd-function-conclude-that-B-2n-1-0-for-n-1-




Question Number 67519 by mathmax by abdo last updated on 28/Aug/19
if (z/(e^z −1)) =Σ_(n=0) ^∞  B_n  (z^n /(n!))  1) calculate B_0 ,B_1 ,B_2 ,B_3 ,B_4   2)prove that z→(1/(e^z −1))+(1/2) is a odd function  conclude that  B_(2n+1) =0  for n≥1
$${if}\:\frac{{z}}{{e}^{{z}} −\mathrm{1}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{B}_{{n}} \:\frac{{z}^{{n}} }{{n}!} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{B}_{\mathrm{0}} ,{B}_{\mathrm{1}} ,{B}_{\mathrm{2}} ,{B}_{\mathrm{3}} ,{B}_{\mathrm{4}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{z}\rightarrow\frac{\mathrm{1}}{{e}^{{z}} −\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\:{is}\:{a}\:{odd}\:{function}\:\:{conclude}\:{that} \\ $$$${B}_{\mathrm{2}{n}+\mathrm{1}} =\mathrm{0}\:\:{for}\:{n}\geqslant\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *