Menu Close

If-z-i-2-and-z-0-5-3i-then-the-maximum-value-of-z-0-iz-is-A-7-B-7-C-5-D-9-




Question Number 139394 by EnterUsername last updated on 26/Apr/21
If ∣z−i∣≤2 and z_0 =5+3i, then the maximum value  of ∣z_0 +iz∣ is  (A) 7          (B) (√7)          (C) 5          (D) 9
Ifzi∣⩽2andz0=5+3i,thenthemaximumvalueofz0+izis(A)7(B)7(C)5(D)9
Answered by mr W last updated on 26/Apr/21
z=x+yi  ∣z−i∣=(√(x^2 +(y−1)^2 ))≤2  x^2 +(y−1)^2 ≤4    F=∣z_0 +iz∣=∣5−y+(3+x)i∣     =(√((5−y)^2 +(3+x)^2 ))     =(√((x+3)^2 +(y−5)^2 ))  F_(min) =(√((−3)^2 +(5−1)^2 ))−2=3  F_(max) =(√((−3)^2 +(5−1)^2 ))+2=7
z=x+yizi∣=x2+(y1)22x2+(y1)24F=∣z0+iz∣=∣5y+(3+x)i=(5y)2+(3+x)2=(x+3)2+(y5)2Fmin=(3)2+(51)22=3Fmax=(3)2+(51)2+2=7
Commented by EnterUsername last updated on 26/Apr/21
How do you get F_(min )  and F_(max) , Sir ?
HowdoyougetFminandFmax,Sir?
Commented by mr W last updated on 26/Apr/21
F  is the distance from point (x,y) to  point (−3,5). point (x,y) should be  on the circle x^2 +(y−1)^2 ≤2^2 , a circle  at center (0,1) and with radius 2.  so the minimum distance F is the  distance from (−3,5) to (0,1) minus  radius 2 and the maximum distance  F is the distance from (−3,5) to (0,1)   plus radius 2.
Fisthedistancefrompoint(x,y)topoint(3,5).point(x,y)shouldbeonthecirclex2+(y1)222,acircleatcenter(0,1)andwithradius2.sotheminimumdistanceFisthedistancefrom(3,5)to(0,1)minusradius2andthemaximumdistanceFisthedistancefrom(3,5)to(0,1)plusradius2.
Commented by EnterUsername last updated on 26/Apr/21
Understood! Thank you Sir.
Understood!ThankyouSir.

Leave a Reply

Your email address will not be published. Required fields are marked *