Menu Close

In-a-equilateral-triangle-ABC-whose-side-is-a-the-points-M-and-N-are-taken-on-the-side-BC-such-that-the-triangles-ABM-AMN-and-ANC-have-the-same-perimeter-Calculate-the-distances-from-vertex-A-to-




Question Number 68664 by Maclaurin Stickker last updated on 14/Sep/19
In a equilateral triangle ABC whose  side is a, the points M and N are taken  on the side BC, such that the triangles  ABM, AMN and ANC have the same   perimeter. Calculate the distances from  vertex A to points M and N.  (solve in detail.)
InaequilateraltriangleABCwhosesideisa,thepointsMandNaretakenonthesideBC,suchthatthetrianglesABM,AMNandANChavethesameperimeter.CalculatethedistancesfromvertexAtopointsMandN.(solveindetail.)
Answered by mr W last updated on 14/Sep/19
Commented by mr W last updated on 14/Sep/19
let BM=NC=x  ⇒MN=a−2x  AM=AN=(√(a^2 +x^2 −2ax cos 60°))=(√(a^2 +x^2 −ax))  a+x+AM=2AM+MN  a+x=AM+a−2x  ⇒AM=3x  (√(a^2 +x^2 −ax))=3x  a^2 +x^2 −ax=9x^2   8x^2 +ax−a^2 =0  x=((((√(33))−1)a)/(16))≈0.2965a  ⇒AM=AN=3x=((3((√(33))−1)a)/(16))≈0.8796a
letBM=NC=xMN=a2xAM=AN=a2+x22axcos60°=a2+x2axa+x+AM=2AM+MNa+x=AM+a2xAM=3xa2+x2ax=3xa2+x2ax=9x28x2+axa2=0x=(331)a160.2965aAM=AN=3x=3(331)a160.8796a
Commented by Rasheed.Sindhi last updated on 15/Sep/19
Sir, why have you assumed BM=NC?
Sir,whyhaveyouassumedBM=NC?
Commented by mr W last updated on 15/Sep/19
the assumption is based on symmetry.  certainly it can also  be proved that  BM must be equal to NC.
theassumptionisbasedonsymmetry.certainlyitcanalsobeprovedthatBMmustbeequaltoNC.
Commented by mr W last updated on 15/Sep/19
let BM=x, NC=y≠x  a+x+(√(x^2 +a^2 −ax))=a−x−y+(√(x^2 +a^2 −ax))+(√(y^2 +a^2 −ay))  ⇒(√(y^2 +a^2 −ay))=2x+y  ⇒a^2 −ay=4x^2 +4xy   ...(i)    a+x+(√(x^2 +a^2 −ax))=a+y+(√(y^2 +a^2 −ay))  ⇒x+(√(x^2 +a^2 −ax))=y+(√(y^2 +a^2 −ay))  ⇒x+(√(x^2 +a^2 −ax))=y+2x+y  ⇒(√(x^2 +a^2 −ax))=2y+x  ⇒a^2 −ax=4y^2 +4xy   ...(ii)  (i)−(ii):  a(x−y)=4(x^2 −y^2 )  ⇒a(x−y)=4(x−y)(x+y)  ⇒x−y=0 or a=4(x+y)  ⇒x=y or x+y=(a/4)  but if x+y=(a/4):  (i)+(ii):  2a^2 −a(x+y)=4(x^2 +y^2 +2xy)  2a^2 −a(x+y)=4(x+y)^2   2a^2 −(a^2 /4)=(a^2 /4)  ((3a^2 )/2)=0 !  ⇒x=y is the only possibility!
letBM=x,NC=yxa+x+x2+a2ax=axy+x2+a2ax+y2+a2ayy2+a2ay=2x+ya2ay=4x2+4xy(i)a+x+x2+a2ax=a+y+y2+a2ayx+x2+a2ax=y+y2+a2ayx+x2+a2ax=y+2x+yx2+a2ax=2y+xa2ax=4y2+4xy(ii)(i)(ii):a(xy)=4(x2y2)a(xy)=4(xy)(x+y)xy=0ora=4(x+y)x=yorx+y=a4butifx+y=a4:(i)+(ii):2a2a(x+y)=4(x2+y2+2xy)2a2a(x+y)=4(x+y)22a2a24=a243a22=0!x=yistheonlypossibility!
Commented by Rasheed.Sindhi last updated on 15/Sep/19
ThαnX a lot sir. You′re very deep  in geometry also!
ThαnXalotsir.Youreverydeepingeometryalso!

Leave a Reply

Your email address will not be published. Required fields are marked *