Menu Close

in-a-triangle-ABC-we-have-2sinA-4cosB-6-4sinB-3cosA-1-determine-C-




Question Number 144050 by ArielVyny last updated on 21/Jun/21
in a triangle ABC we have   { ((2sinA^� +4cosB^� =6)),((4sinB^� +3cosA^� =1)) :}  determine C^�
$${in}\:{a}\:{triangle}\:{ABC}\:{we}\:{have} \\ $$$$\begin{cases}{\mathrm{2}{sin}\hat {{A}}+\mathrm{4}{cos}\hat {{B}}=\mathrm{6}}\\{\mathrm{4}{sin}\hat {{B}}+\mathrm{3}{cos}\hat {{A}}=\mathrm{1}}\end{cases} \\ $$$${determine}\:\hat {{C}} \\ $$
Commented by MJS_new last updated on 21/Jun/21
−1≤sin α ≤1 ∧ −1≤cos β ≤1 ⇒  the only solution of the 1^(st)  equation is  sin α =1 ∧ cos β =1 ⇒  α=90°∧β=0°  but (1) this gives no triangle and (2) this  doesn′t fit the 2^(nd)  equation
$$−\mathrm{1}\leqslant\mathrm{sin}\:\alpha\:\leqslant\mathrm{1}\:\wedge\:−\mathrm{1}\leqslant\mathrm{cos}\:\beta\:\leqslant\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{equation}\:\mathrm{is} \\ $$$$\mathrm{sin}\:\alpha\:=\mathrm{1}\:\wedge\:\mathrm{cos}\:\beta\:=\mathrm{1}\:\Rightarrow \\ $$$$\alpha=\mathrm{90}°\wedge\beta=\mathrm{0}° \\ $$$$\mathrm{but}\:\left(\mathrm{1}\right)\:\mathrm{this}\:\mathrm{gives}\:\mathrm{no}\:\mathrm{triangle}\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{this} \\ $$$$\mathrm{doesn}'\mathrm{t}\:\mathrm{fit}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{equation} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *