Menu Close

In-a-triangle-whose-sides-measure-5-cm-6-cm-and-7-cm-a-point-P-inside-the-triangle-is-2-cm-from-de-long-side-5-cm-and-3-cm-from-the-long-side-6-cm-What-is-the-distance-from-P-beside-7-cm-side-




Question Number 76455 by Maclaurin Stickker last updated on 27/Dec/19
In a triangle whose sides measure  5 cm, 6 cm, and  7 cm a point P, inside  the triangle is 2 cm from de long side  5 cm and 3 cm from the long side  6 cm. What is the distance from P  beside 7 cm side?
$${In}\:{a}\:{triangle}\:{whose}\:{sides}\:{measure} \\ $$$$\mathrm{5}\:{cm},\:\mathrm{6}\:{cm},\:{and}\:\:\mathrm{7}\:{cm}\:{a}\:{point}\:{P},\:{inside} \\ $$$${the}\:{triangle}\:{is}\:\mathrm{2}\:{cm}\:{from}\:{de}\:{long}\:{side} \\ $$$$\mathrm{5}\:{cm}\:{and}\:\mathrm{3}\:{cm}\:{from}\:{the}\:{long}\:{side} \\ $$$$\mathrm{6}\:{cm}.\:{What}\:{is}\:{the}\:{distance}\:{from}\:{P} \\ $$$${beside}\:\mathrm{7}\:{cm}\:{side}? \\ $$
Commented by MJS last updated on 27/Dec/19
we can construct it ⇒ we can calculate it    (1) draw the triangle  (2) draw parallels to the sides ⇒ P  (3) measure the distance between P and       the 3^(rd)  side
$$\mathrm{we}\:\mathrm{can}\:\mathrm{construct}\:\mathrm{it}\:\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{calculate}\:\mathrm{it} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{draw}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{draw}\:\mathrm{parallels}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\Rightarrow\:{P} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{measure}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:{P}\:\mathrm{and} \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{side} \\ $$
Commented by Maclaurin Stickker last updated on 27/Dec/19
thanks
$${thanks} \\ $$
Answered by mr W last updated on 27/Dec/19
area=(1/2)(a×d_a +b×d_b +c×d_c )  area=(√(s(s−a)(s−b)(s−c)))  with s=((a+b+c)/2)=((5+6+7)/2)=9  (1/2)(5×2+6×3+7×d_c )=(√(9(9−5)(9−6)(9−7)))  ⇒d_c =((12(√6))/7)−4≈0.2
$${area}=\frac{\mathrm{1}}{\mathrm{2}}\left({a}×{d}_{{a}} +{b}×{d}_{{b}} +{c}×{d}_{{c}} \right) \\ $$$${area}=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)} \\ $$$${with}\:{s}=\frac{{a}+{b}+{c}}{\mathrm{2}}=\frac{\mathrm{5}+\mathrm{6}+\mathrm{7}}{\mathrm{2}}=\mathrm{9} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{5}×\mathrm{2}+\mathrm{6}×\mathrm{3}+\mathrm{7}×{d}_{{c}} \right)=\sqrt{\mathrm{9}\left(\mathrm{9}−\mathrm{5}\right)\left(\mathrm{9}−\mathrm{6}\right)\left(\mathrm{9}−\mathrm{7}\right)} \\ $$$$\Rightarrow{d}_{{c}} =\frac{\mathrm{12}\sqrt{\mathrm{6}}}{\mathrm{7}}−\mathrm{4}\approx\mathrm{0}.\mathrm{2} \\ $$
Commented by mr W last updated on 27/Dec/19
you even must say!
$${you}\:{even}\:{must}\:{say}! \\ $$
Commented by Maclaurin Stickker last updated on 27/Dec/19
how did you find the first expression?
$${how}\:{did}\:{you}\:{find}\:{the}\:{first}\:{expression}? \\ $$
Commented by mr W last updated on 27/Dec/19
Commented by mr W last updated on 27/Dec/19
ΔABC=ΔBCP+ΔACP+ΔBAP  =(1/2)ad_a +(1/2)bd_b +(1/2)cd_c   =(1/2)(ad_a +bd_b +cd_c )
$$\Delta{ABC}=\Delta{BCP}+\Delta{ACP}+\Delta{BAP} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ad}_{{a}} +\frac{\mathrm{1}}{\mathrm{2}}{bd}_{{b}} +\frac{\mathrm{1}}{\mathrm{2}}{cd}_{{c}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({ad}_{{a}} +{bd}_{{b}} +{cd}_{{c}} \right) \\ $$
Commented by Maclaurin Stickker last updated on 27/Dec/19
Can I just say that the distances are  perpendicular?
$${Can}\:{I}\:{just}\:{say}\:{that}\:{the}\:{distances}\:{are} \\ $$$${perpendicular}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *