Menu Close

In-an-AP-if-the-m-th-term-is-n-and-the-n-th-term-is-m-where-m-is-not-equal-to-n-find-1-The-value-of-m-n-th-term-2-The-p-th-term-




Question Number 7399 by Tawakalitu. last updated on 27/Aug/16
In an AP , if the m^(th)  term is n and the n^(th)  term  is m. where m is not equal to n. find  (1) The value of (m + n)^(th)  term  (2) The p^(th)  term.
InanAP,ifthemthtermisnandthenthtermism.wheremisnotequalton.find(1)Thevalueof(m+n)thterm(2)Thepthterm.
Answered by Yozzia last updated on 27/Aug/16
For an AP, the k^(th)  term u(k) is given by  u(k)=u(1)+(k−1)d where d is a constant.  ∴ k=m⇒u(m)=u(1)+(m−1)d=n  and k=n⇒u(n)=u(1)+(n−1)d=m    (1) k=m+n⇒u(m+n)=u(1)+(m+n−1)d  But, n−m=(m−n)d  and m≠n⇒d=−1  ∴u(m+n)=u(1)+(m+n−1)(−1)  but, n+m=2u(1)+(−1)(m+n−2)  2(m+n)=2u(1)+2  u(1)=m+n−1  ∴ u(m+n)=m+n−1+(−1)(m+n−1)=0    (2) k=p⇒ u(p)=m+n−1+(p−1)(−1)=m+n−p
ForanAP,thekthtermu(k)isgivenbyu(k)=u(1)+(k1)dwheredisaconstant.k=mu(m)=u(1)+(m1)d=nandk=nu(n)=u(1)+(n1)d=m(1)k=m+nu(m+n)=u(1)+(m+n1)dBut,nm=(mn)dandmnd=1u(m+n)=u(1)+(m+n1)(1)but,n+m=2u(1)+(1)(m+n2)2(m+n)=2u(1)+2u(1)=m+n1u(m+n)=m+n1+(1)(m+n1)=0(2)k=pu(p)=m+n1+(p1)(1)=m+np
Commented by Rasheed Soomro last updated on 27/Aug/16
Another way  From the above  d=−1  u(1)+(m−1)d=n  adding nd to both sides  u(1)+(m−1)d+nd=n+nd  u(1)+(m+n−1)d=n+n(−1)  u(1)+(m+n−1)d=0  u(m+n)=0    u(1)+(m−1)d=n  Subtracting (m−p)d to both sides  u(1)+(m−1)d−(m−p)d=n−(m−p)d  u(1)+(m−1−m+p)d=n−(m−p)(−1)  u(1)+(p−1)d=n+m−p  u(p)=m+n−p
AnotherwayFromtheaboved=1u(1)+(m1)d=naddingndtobothsidesu(1)+(m1)d+nd=n+ndu(1)+(m+n1)d=n+n(1)u(1)+(m+n1)d=0u(m+n)=0u(1)+(m1)d=nSubtracting(mp)dtobothsidesu(1)+(m1)d(mp)d=n(mp)du(1)+(m1m+p)d=n(mp)(1)u(1)+(p1)d=n+mpu(p)=m+np
Commented by Tawakalitu. last updated on 27/Aug/16
Thank you sir. i really appreciate
Thankyousir.ireallyappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *