Menu Close

In-how-many-ways-may-a-line-consisting-of-4-men-and-4-women-be-acquired-if-no-two-women-are-to-be-adjacent-to-each-other-




Question Number 870 by 112358 last updated on 05/Apr/15
In how many ways may a line   consisting of 4 men and 4 women  be acquired if no two women are  to be adjacent to each other?
$${In}\:{how}\:{many}\:{ways}\:{may}\:{a}\:{line}\: \\ $$$${consisting}\:{of}\:\mathrm{4}\:{men}\:{and}\:\mathrm{4}\:{women} \\ $$$${be}\:{acquired}\:{if}\:{no}\:{two}\:{women}\:{are} \\ $$$${to}\:{be}\:{adjacent}\:{to}\:{each}\:{other}? \\ $$
Answered by prakash jain last updated on 05/Apr/15
A. Let women take position 1, 3,5,7  and men 2,4,6,8.  Seating arrangment for men=4!  Seating arrangment for women=4!  Total number of seating arrangment A=4!×4!  B. Let  men take position 1, 3,5,7  and women 2,4,6,8.  Total number of seating arrangment B=4!×4!  Total =A+B=2×4!×4!
$$\mathrm{A}.\:\mathrm{Let}\:\mathrm{women}\:\mathrm{take}\:\mathrm{position}\:\mathrm{1},\:\mathrm{3},\mathrm{5},\mathrm{7} \\ $$$$\mathrm{and}\:\mathrm{men}\:\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{8}. \\ $$$$\mathrm{Seating}\:\mathrm{arrangment}\:\mathrm{for}\:\mathrm{men}=\mathrm{4}! \\ $$$$\mathrm{Seating}\:\mathrm{arrangment}\:\mathrm{for}\:\mathrm{women}=\mathrm{4}! \\ $$$$\mathrm{Total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{seating}\:\mathrm{arrangment}\:\mathrm{A}=\mathrm{4}!×\mathrm{4}! \\ $$$$\mathrm{B}.\:\mathrm{Let}\:\:\mathrm{men}\:\mathrm{take}\:\mathrm{position}\:\mathrm{1},\:\mathrm{3},\mathrm{5},\mathrm{7} \\ $$$$\mathrm{and}\:\mathrm{women}\:\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{8}. \\ $$$$\mathrm{Total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{seating}\:\mathrm{arrangment}\:\mathrm{B}=\mathrm{4}!×\mathrm{4}! \\ $$$$\mathrm{Total}\:=\mathrm{A}+\mathrm{B}=\mathrm{2}×\mathrm{4}!×\mathrm{4}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *