Menu Close

Inequality-relation-starting-a-new-thread-x-p-p-p-1-1-p-x-q-q-q-1-1-q-p-2-q-1-x-1-x-p-p-p-1-1-6-x-q-q-q-1-1-2-x-p-p-p-1-1-p-1-6-1-2-1-3-x-p-p-p-




Question Number 1952 by prakash jain last updated on 25/Oct/15
Inequality relation starting a new thread  (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q)  p=2, q=1, x=1  (x^p /(p(p+1)))=(1/6)  (x^q /(q(q+1)))=(1/2)   (x^p /(p(p+1)))−(1/p) = (1/6)−(1/2)=−(1/3)   (x^p /(p(p+1))) = (1/2) − 1 = −(1/2)  A≥B and c>d ⇏A−c≥B−d  Since you are subtracting a larger quantity  c from A, so if (c−d)>(A−B) then A−c<B−d
$$\mathrm{Inequality}\:\mathrm{relation}\:\mathrm{starting}\:\mathrm{a}\:\mathrm{new}\:\mathrm{thread} \\ $$$$\frac{{x}^{{p}} }{{p}\left({p}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{p}}\geqslant\frac{{x}^{{q}} }{{q}\left({q}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{q}} \\ $$$${p}=\mathrm{2},\:{q}=\mathrm{1},\:{x}=\mathrm{1} \\ $$$$\frac{{x}^{{p}} }{{p}\left({p}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\frac{{x}^{{q}} }{{q}\left({q}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\frac{{x}^{{p}} }{{p}\left({p}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{p}}\:=\:\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\frac{{x}^{{p}} }{{p}\left({p}+\mathrm{1}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:−\:\mathrm{1}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${A}\geqslant{B}\:\mathrm{and}\:{c}>{d}\:\nRightarrow{A}−{c}\geqslant{B}−{d} \\ $$$$\mathrm{Since}\:\mathrm{you}\:\mathrm{are}\:\mathrm{subtracting}\:\mathrm{a}\:\mathrm{larger}\:\mathrm{quantity} \\ $$$${c}\:\mathrm{from}\:{A},\:\mathrm{so}\:\mathrm{if}\:\left({c}−{d}\right)>\left({A}−{B}\right)\:\mathrm{then}\:{A}−{c}<{B}−{d} \\ $$
Commented by prakash jain last updated on 25/Oct/15
Please see comments in Q1928
$$\mathrm{Please}\:\mathrm{see}\:\mathrm{comments}\:\mathrm{in}\:\mathrm{Q1928} \\ $$
Commented by Rasheed Soomro last updated on 26/Oct/15
I learnt something that I didn′t know before!
$${I}\:{learnt}\:{something}\:{that}\:{I}\:{didn}'{t}\:{know}\:{before}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *