Menu Close

integral-of-e-2ax-2-




Question Number 132674 by aurpeyz last updated on 15/Feb/21
integral of e^(−2ax^2 )
integralofe2ax2
Answered by Olaf last updated on 15/Feb/21
Let Ω_a (x) = ∫_0 ^x e^(−2at^2 ) dt  1) a = 0  Ω_0 (x) = ∫_0 ^x dt = x  2) a > 0  Let u = (√(2a))t  Ω_a (x) = ∫_0 ^((√(2a))x) e^(−u^2 ) .(du/( (√(2a))))  Ω_a (x) = ((√π)/( 2(√(2a))))((2/( (√π)))∫_0 ^((√(2a))x) e^(−u^2 ) du)  Ω_a (x) = (√(π/(8a))).erf((√(2a))x)  3) a < 0  Let u = i(√(−2a))t  Ω_a (x) = ∫_0 ^(i(√(−2a))x) e^(−u^2 ) .(du/( i(√(−2a))))  Ω_a (x) = ((√π)/( 2i(√(−2a))))((2/( (√π)))∫_0 ^(−i(√(2a))x) e^(−u^2 ) du)  Ω_a (x) = (√(−(π/(8a)))).((erf(i(√(−2a))x))/i)  Ω_a (x) = (√(−(π/(8a)))).erfi((√(−2a))x)
LetΩa(x)=0xe2at2dt1)a=0Ω0(x)=0xdt=x2)a>0Letu=2atΩa(x)=02axeu2.du2aΩa(x)=π22a(2π02axeu2du)Ωa(x)=π8a.erf(2ax)3)a<0Letu=i2atΩa(x)=0i2axeu2.dui2aΩa(x)=π2i2a(2π0i2axeu2du)Ωa(x)=π8a.erf(i2ax)iΩa(x)=π8a.erfi(2ax)
Commented by aurpeyz last updated on 16/Feb/21
arrrrggggg
arrrrggggg

Leave a Reply

Your email address will not be published. Required fields are marked *