Menu Close

Integrate-dx-ax-2-bx-c-y-ax-2-bx-c-y-dy-dx-2ax-b-d-b-2-4ac-d-d-Case-1-d-2-lt-0-I-2-d-tan-1-y-d-C-tan-1-arctan-Case-2-d-2-0-I-2-y-C-Case




Question Number 66066 by Kunal12588 last updated on 08/Aug/19
Integrate ∫(dx/(ax^2 +bx+c))  y = ax^2 +bx+c  y′=(dy/dx)=2ax+b  d = (√(b^2 −4ac))  d′ = (√(−d))  Case 1. d^2  < 0  I=(2/d′)tan^(−1) ((y′)/d′)+C   [tan^(−1) α=arctan α]  Case 2. d^2 =0  I=((−2)/(y′))+C  Case 3. d^2  > 0  I=(1/d)ln∣((y′−d)/(y′+d))∣+C   [ln a = log_e  a]
$${Integrate}\:\int\frac{{dx}}{{ax}^{\mathrm{2}} +{bx}+{c}} \\ $$$${y}\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${y}'=\frac{{dy}}{{dx}}=\mathrm{2}{ax}+{b} \\ $$$${d}\:=\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}} \\ $$$${d}'\:=\:\sqrt{−{d}} \\ $$$${Case}\:\mathrm{1}.\:{d}^{\mathrm{2}} \:<\:\mathrm{0} \\ $$$${I}=\frac{\mathrm{2}}{{d}'}{tan}^{−\mathrm{1}} \frac{{y}'}{{d}'}+{C}\:\:\:\left[{tan}^{−\mathrm{1}} \alpha={arctan}\:\alpha\right] \\ $$$${Case}\:\mathrm{2}.\:{d}^{\mathrm{2}} =\mathrm{0} \\ $$$${I}=\frac{−\mathrm{2}}{{y}'}+{C} \\ $$$${Case}\:\mathrm{3}.\:{d}^{\mathrm{2}} \:>\:\mathrm{0} \\ $$$${I}=\frac{\mathrm{1}}{{d}}\mathrm{ln}\mid\frac{{y}'−{d}}{{y}'+{d}}\mid+{C}\:\:\:\left[\mathrm{ln}\:{a}\:=\:\mathrm{log}_{{e}} \:{a}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *