Question Number 66066 by Kunal12588 last updated on 08/Aug/19
$${Integrate}\:\int\frac{{dx}}{{ax}^{\mathrm{2}} +{bx}+{c}} \\ $$$${y}\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${y}'=\frac{{dy}}{{dx}}=\mathrm{2}{ax}+{b} \\ $$$${d}\:=\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}} \\ $$$${d}'\:=\:\sqrt{−{d}} \\ $$$${Case}\:\mathrm{1}.\:{d}^{\mathrm{2}} \:<\:\mathrm{0} \\ $$$${I}=\frac{\mathrm{2}}{{d}'}{tan}^{−\mathrm{1}} \frac{{y}'}{{d}'}+{C}\:\:\:\left[{tan}^{−\mathrm{1}} \alpha={arctan}\:\alpha\right] \\ $$$${Case}\:\mathrm{2}.\:{d}^{\mathrm{2}} =\mathrm{0} \\ $$$${I}=\frac{−\mathrm{2}}{{y}'}+{C} \\ $$$${Case}\:\mathrm{3}.\:{d}^{\mathrm{2}} \:>\:\mathrm{0} \\ $$$${I}=\frac{\mathrm{1}}{{d}}\mathrm{ln}\mid\frac{{y}'−{d}}{{y}'+{d}}\mid+{C}\:\:\:\left[\mathrm{ln}\:{a}\:=\:\mathrm{log}_{{e}} \:{a}\right] \\ $$