Menu Close

Integrate-f-x-y-1-1-x-2-y-2-2-over-the-triangle-with-vertices-0-0-1-0-1-3-after-changing-it-to-polar-form-




Question Number 72796 by Learner-123 last updated on 03/Nov/19
Integrate f(x,y)=(1/((1+x^2 +y^2 )^2 )) over  the triangle with vertices (0,0) ,(1,0),  (1,(√3)) after changing it to polar form.
Integratef(x,y)=1(1+x2+y2)2overthetrianglewithvertices(0,0),(1,0),(1,3)afterchangingittopolarform.
Answered by mind is power last updated on 03/Nov/19
    the triagle can bee expreced As={(x,y)∈IR^2 ∣   0≤ y≤(√3)x,0≤x≤1}   x=rcos(θ),  y=rsin(θ)   0≤rsin(θ)≤rcos(θ)(√3) ⇒0≤tg(θ)≤(√3)....1  0≤rcos(θ)≤1⇒0≤r≤(1/(cos(θ)))...2  1⇒θ∈[0,(π/3)]  ∫∫f(x,y)dx=∫_0 ^(π/3) .∫_0 ^(1/(cos(θ))) .((rdrdθ)/((1+r^2 )^2 ))=∫_0 ^(π/3) (∫_0 ^(1/(cos(θ))) (r/((1+r^2 )^2 )) )dθ  =∫_0 ^(π/3) [−(1/2).(1/(1+r^2 ))]_0 ^(1/(cos(θ))) dθ=∫_0 ^(π/3) [−((cos^2 (θ))/(2(1+cos^2 (θ))))+(1/2)]dθ  ∫_0 ^(π/3) ((dθ/(2(1+cos^2 (θ)))))=∫_0 ^(π/3) (((1+tg^2 (θ)))/(4+2tg^2 (θ)))dθ=(1/(2(√2)))∫_0 ^(π/3) .(((1/( (√2)))(1+tg^2 (θ)))/((1+(((tg(θ))/( (√2))))^2 )))  =(1/(2(√2)))[arctan((√2)tg(θ))]_0 ^(π/3) =((arctan((√6)))/(2(√2)))
thetriaglecanbeeexprecedAs={(x,y)IR20y3x,0x1}x=rcos(θ),y=rsin(θ)0rsin(θ)rcos(θ)30tg(θ)3.10rcos(θ)10r1cos(θ)21θ[0,π3]f(x,y)dx=0π3.01cos(θ).rdrdθ(1+r2)2=0π3(01cos(θ)r(1+r2)2)dθ=0π3[12.11+r2]01cos(θ)dθ=0π3[cos2(θ)2(1+cos2(θ))+12]dθ0π3(dθ2(1+cos2(θ)))=0π3(1+tg2(θ))4+2tg2(θ)dθ=1220π3.12(1+tg2(θ))(1+(tg(θ)2)2)=122[arctan(2tg(θ))]0π3=arctan(6)22
Commented by Learner-123 last updated on 03/Nov/19
thanks sir.
thankssir.
Commented by mind is power last updated on 03/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *