Question Number 66906 by Kunal12588 last updated on 20/Aug/19
$${Intergrate}\:{I}=\int\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\:{dt} \\ $$
Commented by Prithwish sen last updated on 20/Aug/19
$$\frac{\mathrm{1}}{\mathrm{2i}}\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{it}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{it}^{\mathrm{2}} }\:\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left[−\mathrm{sin}^{−\mathrm{1}} \mathrm{it}+\:\mathrm{tan}^{−\mathrm{1}} \mathrm{it}\right]+\mathrm{C} \\ $$$$\mathrm{please}\:\mathrm{check} \\ $$
Commented by mathmax by abdo last updated on 21/Aug/19
$${I}\:=\int\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:=\int\:\:\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}−{it}^{\mathrm{2}} \right)\left(\mathrm{1}+{it}^{\mathrm{2}} \right)}{dt}\:=\frac{\mathrm{1}}{\mathrm{2}{it}^{\mathrm{2}} }\int\:{t}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{1}−{it}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}+{it}^{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\:\left\{\int\:\:\:\frac{{dt}}{\mathrm{1}−{it}^{\mathrm{2}} }−\int\:\:\frac{{dt}}{\mathrm{1}+{it}^{\mathrm{2}} }\right\}\:{but}\:\int\:\frac{{dt}}{\mathrm{1}−{it}^{\mathrm{2}} }\:=\int\:\:\frac{{dt}}{\left(\mathrm{1}−\sqrt{{i}}{t}\right)\left(\mathrm{1}+\sqrt{{i}}{t}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\:\left\{\frac{\mathrm{1}}{\left.\mathrm{1}−\sqrt{{i}}{t}\right)}+\frac{\mathrm{1}}{\mathrm{1}+\sqrt{{i}}{t}}\right\}{dt}\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{i}}}{ln}\left(\frac{\mathrm{1}+\sqrt{{i}}{t}}{\mathrm{1}−\sqrt{{i}}{t}}\right)\:+{c}_{\mathrm{1}} \\ $$$$\int\:\:\frac{{dt}}{\mathrm{1}+{it}^{\mathrm{2}} }\:=\int\:\frac{{dt}}{\mathrm{1}+\left(\sqrt{{i}}{t}\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\:\sqrt{{i}}}\:{arctan}\left(\sqrt{{i}}{t}\right)\:+{c}_{\mathrm{2}} \:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{4}{i}\sqrt{{i}}}{ln}\left(\frac{\mathrm{1}+\sqrt{{i}}{t}}{\mathrm{1}−\sqrt{{i}}{t}}\right)−\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{{i}}}\:{arctan}\left(\sqrt{{i}}{t}\right)+{C}\:\:\:\:{with}\:\sqrt{{i}}={e}^{\frac{{i}\pi}{\mathrm{4}}} \\ $$
Commented by Kunal12588 last updated on 21/Aug/19
$${thanks}\:{sir} \\ $$
Commented by turbo msup by abdo last updated on 21/Aug/19
$${you}\:{are}\:{welcome} \\ $$
Commented by mathmax by abdo last updated on 26/Aug/19
$${classic}\:{method}\:\:\:\:{let}\:{decompose}\:{F}\left({t}\right)\:=\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{t}^{\mathrm{2}} }\:=\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} \:+\mathrm{1}−\sqrt{\mathrm{2}}{t}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}+\sqrt{\mathrm{2}}{t}\right)} \\ $$$$=\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)}\:=\frac{{at}+{b}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{{ct}+{d}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left(−{t}\right)={F}\left({t}\right)\Rightarrow\frac{−{at}+{b}}{{t}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{t}+\mathrm{1}}+\frac{−{ct}\:+{d}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:={F}\left({t}\right)\:\Rightarrow{c}=−{a}\:{and}\:{d}={b} \\ $$$$\Rightarrow{F}\left({t}\right)\:=\frac{{at}+{b}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{−{at}+{b}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{0}\:=\mathrm{2}{b}\:\Rightarrow{b}=\mathrm{0} \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{{a}}{\mathrm{2}+\sqrt{\mathrm{2}}}−\frac{{a}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:=\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){a}−\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){a}}{\mathrm{2}}\:\Rightarrow \\ $$$$−\mathrm{2}\sqrt{\mathrm{2}}{a}\:=\mathrm{1}\:\Rightarrow{a}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:\Rightarrow \\ $$$$\int\:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:\:{but} \\ $$$$\int\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:=\int\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{t}\:\:+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}\:=\int\:\:\:\frac{{dt}}{\left({t}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=_{{t}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{u}} \:\:\:\:\mathrm{2}\int\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{2}}}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{arctan}\left({t}\sqrt{\mathrm{2}}+\mathrm{1}\right)\:+{c}_{\mathrm{1}} \\ $$$$\int\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:=_{{t}=−{u}} \:\:\:\:\:\:\int\:\:\frac{−{du}}{{u}^{\mathrm{2}} +\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{arctan}\left(−{t}\sqrt{\mathrm{2}}\:+\mathrm{1}\right)\:+{c}_{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)+{c}_{\mathrm{2}} \:\Rightarrow \\ $$$$\int\:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{arctan}\left({t}\sqrt{\mathrm{2}}\:+\mathrm{1}\right)\:+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{4}}\:{arctan}\left({t}\sqrt{\mathrm{2}}\:+\mathrm{1}\right)\:+{C} \\ $$$$ \\ $$
Answered by Tanmay chaudhury last updated on 20/Aug/19
$$\int\frac{{dt}}{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({t}+\frac{\mathrm{1}}{{t}}\right)}{\left({t}+\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} −\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({t}−\frac{\mathrm{1}}{{t}}\right)}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$$${formula}\:\int\frac{{dx}}{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{a}}{ln}\left(\frac{{x}−{a}}{{x}+{a}}\right)+{c} \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}}{tan}^{−\mathrm{1}} \left(\frac{{x}}{{a}}\right)+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\left(\frac{{t}+\frac{\mathrm{1}}{{t}}−\sqrt{\mathrm{2}}}{{t}+\frac{\mathrm{1}}{{t}}+\sqrt{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\mathrm{1}}{{t}}}{\:\sqrt{\mathrm{2}}}\right)+{c} \\ $$$$ \\ $$
Commented by Kunal12588 last updated on 21/Aug/19
$${thanks}\:{sir} \\ $$