Menu Close

Is-a-b-f-x-dx-x-a-b-f-x-a-lt-x-lt-b-




Question Number 2776 by Filup last updated on 27/Nov/15
Is:  ∫_a ^( b) f(x)dx≥Σ_(x=a) ^b f(x)  a<x<b
$$\mathrm{Is}: \\ $$$$\int_{{a}} ^{\:{b}} {f}\left({x}\right){dx}\geqslant\underset{{x}={a}} {\overset{{b}} {\sum}}{f}\left({x}\right) \\ $$$${a}<{x}<{b} \\ $$
Commented by Filup last updated on 27/Nov/15
That is what I would assume
$$\mathrm{That}\:\mathrm{is}\:\mathrm{what}\:\mathrm{I}\:\mathrm{would}\:\mathrm{assume} \\ $$
Commented by Filup last updated on 27/Nov/15
This is interesting. I was curious and  didn′t realise there is so much to consider    I was thinking more generally. Lets say  f(x)=ax^i +bx^(i−1) +...+x^1 +k  or f(x)=Σ_(i=1) ^n a_i x^i   or something as simple as  f(x)=ax^2 +bx+c
$$\mathrm{This}\:\mathrm{is}\:\mathrm{interesting}.\:\mathrm{I}\:\mathrm{was}\:\mathrm{curious}\:\mathrm{and} \\ $$$$\mathrm{didn}'\mathrm{t}\:\mathrm{realise}\:\mathrm{there}\:\mathrm{is}\:\mathrm{so}\:\mathrm{much}\:\mathrm{to}\:\mathrm{consider} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{was}\:\mathrm{thinking}\:\mathrm{more}\:\mathrm{generally}.\:\mathrm{Lets}\:\mathrm{say} \\ $$$${f}\left({x}\right)={ax}^{{i}} +{bx}^{{i}−\mathrm{1}} +…+{x}^{\mathrm{1}} +{k} \\ $$$$\mathrm{or}\:{f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{{i}} \\ $$$${or}\:{something}\:{as}\:{simple}\:{as} \\ $$$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$ \\ $$$$ \\ $$
Commented by Yozzi last updated on 27/Nov/15
What does Σ_(x=a) ^b f(x) mean? Is it implying  that a,b∈Z? If you′re trying to say  to add up all values of f(x) for  f(x) being continuous and positive in the  interval a<x<b, Σ_(x=a) ^b f(x) is divergent  since the set X={x∈R∣a<x<b}  has non−finite cardinality.   If f(x) is continous and positive for a<x<b  the integral ∫_a ^b f(x)dx is finite and  positive. The inequality would not  hold.  Alternatively, f(x) could be such that the value  of Σ_(x=a) ^b f(x) is −∞. In this case the  inequality holds since ∫_a ^b f(x)dx  is finite.
$${What}\:{does}\:\underset{{x}={a}} {\overset{{b}} {\sum}}{f}\left({x}\right)\:{mean}?\:{Is}\:{it}\:{implying} \\ $$$${that}\:{a},{b}\in\mathbb{Z}?\:{If}\:{you}'{re}\:{trying}\:{to}\:{say} \\ $$$${to}\:{add}\:{up}\:{all}\:{values}\:{of}\:{f}\left({x}\right)\:{for} \\ $$$${f}\left({x}\right)\:{being}\:{continuous}\:{and}\:{positive}\:{in}\:{the} \\ $$$${interval}\:{a}<{x}<{b},\:\underset{{x}={a}} {\overset{{b}} {\sum}}{f}\left({x}\right)\:{is}\:{divergent} \\ $$$${since}\:{the}\:{set}\:{X}=\left\{{x}\in\mathbb{R}\mid{a}<{x}<{b}\right\} \\ $$$${has}\:{non}−{finite}\:{cardinality}.\: \\ $$$${If}\:{f}\left({x}\right)\:{is}\:{continous}\:{and}\:{positive}\:{for}\:{a}<{x}<{b} \\ $$$${the}\:{integral}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx}\:{is}\:{finite}\:{and} \\ $$$${positive}.\:{The}\:{inequality}\:{would}\:{not} \\ $$$${hold}. \\ $$$${Alternatively},\:{f}\left({x}\right)\:{could}\:{be}\:{such}\:{that}\:{the}\:{value} \\ $$$${of}\:\underset{{x}={a}} {\overset{{b}} {\sum}}{f}\left({x}\right)\:{is}\:−\infty.\:{In}\:{this}\:{case}\:{the} \\ $$$${inequality}\:{holds}\:{since}\:\int_{{a}} ^{{b}} {f}\left({x}\right){dx} \\ $$$${is}\:{finite}. \\ $$
Commented by prakash jain last updated on 27/Nov/15
if f(x) is defined only over finite subset.  Isn′t ∫_D f(x)dx=0 ?  Assuming ∣f(x)∣ <M  ∀x∈D.
$$\mathrm{if}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{only}\:\mathrm{over}\:\mathrm{finite}\:\mathrm{subset}. \\ $$$$\mathrm{Isn}'\mathrm{t}\:\int_{{D}} {f}\left({x}\right){dx}=\mathrm{0}\:? \\ $$$$\mathrm{Assuming}\:\mid{f}\left({x}\right)\mid\:<\mathrm{M}\:\:\forall{x}\in\mathrm{D}. \\ $$
Commented by 123456 last updated on 27/Nov/15
if you take f(x)= { ((g(x)    x∈D)),((0           x∉D)) :}  where D⊂[a,b] is a finite subset  i think that Σf(x) can converge
$$\mathrm{if}\:\mathrm{you}\:\mathrm{take}\:{f}\left({x}\right)=\begin{cases}{{g}\left({x}\right)\:\:\:\:{x}\in\mathrm{D}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:{x}\notin\mathrm{D}}\end{cases} \\ $$$$\mathrm{where}\:\mathrm{D}\subset\left[{a},{b}\right]\:\mathrm{is}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{subset} \\ $$$$\mathrm{i}\:\mathrm{think}\:\mathrm{that}\:\Sigma{f}\left({x}\right)\:\mathrm{can}\:\mathrm{converge} \\ $$
Commented by 123456 last updated on 27/Nov/15
yes, so if Σ_(x∈[a,b]) f(x) converge them  ∫_a ^b f(x)dx=0  (assuming ∣f(x)∣≤M,x∈D)
$$\mathrm{yes},\:\mathrm{so}\:\mathrm{if}\:\underset{{x}\in\left[{a},{b}\right]} {\sum}{f}\left({x}\right)\:\mathrm{converge}\:\mathrm{them} \\ $$$$\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}=\mathrm{0}\:\:\left(\mathrm{assuming}\:\mid{f}\left({x}\right)\mid\leqslant\mathrm{M},{x}\in\mathrm{D}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *