Menu Close

Is-i-0-i-1-i-2-i-n-cyclic-for-any-value-of-n-Determine-the-smallest-such-n-if-it-exists-is-a-complex-cuberoot-of-unity-and-i-1-




Question Number 8301 by Rasheed Soomro last updated on 06/Oct/16
Is  { (ω+i)^0 , (ω+i)^1 , (ω+i)^2 , ...., (ω+i)^n  }  cyclic for any value of n?  Determine the smallest such n if it exists.  ω is a complex cuberoot of unity and  i=(√(−1))
Is{(ω+i)0,(ω+i)1,(ω+i)2,.,(ω+i)n}cyclicforanyvalueofn?Determinethesmallestsuchnifitexists.ωisacomplexcuberootofunityandi=1
Commented by 123456 last updated on 07/Oct/16
(ω+i)^n =Σ_(i=0) ^n  ((n),(i) )ω^i i^(n−i)   ω^i =ω^(i mod3)   i^(n−i) =i^(n−i mod 4)
(ω+i)n=ni=0(ni)ωiiniωi=ωimod3ini=inimod4
Answered by prakash jain last updated on 08/Oct/16
w=cos ((2π)/3)+isin ((2π)/3)  w+i=cos ((2π)/3)+i(sin ((2π)/3)+1)  ∣w+i∣=(√(cos^2 ((2π)/3)+(sin ((2π)/3)+1)^2 ))=r≠1  w+i=re^(i∅)   ∵r≠1, (w+i)^j =(w+i)^k ⇒j=k
w=cos2π3+isin2π3w+i=cos2π3+i(sin2π3+1)w+i∣=cos22π3+(sin2π3+1)2=r1w+i=reir1,(w+i)j=(w+i)kj=k

Leave a Reply

Your email address will not be published. Required fields are marked *