Menu Close

is-it-always-satisfying-A-lim-n-f-n-x-dx-B-lim-n-f-n-x-dx-A-B-please-show-counter-example-checking-1-f-n-x-x-n-x-0-1-A-lim-n-0-1-x-n-dx-lim-n-1-n-1-x-n-1-0-B-0-1-




Question Number 8628 by sou1618 last updated on 18/Oct/16
is it always satisfying?  A=lim[n→∞]∫f(n,x)dx  B=∫lim[n→∞]f(n,x)dx  A=B??  please show counter example      checking  (1)  f(n,x)=x^n   ,x[0→1]  A=lim_(n→∞) ∫_0 ^1 x^n dx=lim_(n→∞) (1/(n+1))x^(n+1) =0  B=∫_0 ^1 lim_(n→∞) x^n dx=∫_0 ^1 0dx=0  so  A=B    (2)  f(n,x)=(1+(x/n))^n   A=lim_(n→∞) ∫(1+(x/n))^n dx    =lim_(n→∞) (n/((n+1)))(1+(x/n))^(n+1)     =e^x   B=∫lim_(n→∞) (1+(x/n))^n dx    =∫e^x dx    =e^x   so  A=B    . . .
isitalwayssatisfying?A=lim[n]f(n,x)dxB=lim[n]f(n,x)dxA=B??pleaseshowcounterexamplechecking(1)f(n,x)=xn,x[01]A=limn01xndx=limn1n+1xn+1=0B=01limnxndx=010dx=0soA=B(2)f(n,x)=(1+xn)nA=limn(1+xn)ndx=limnn(n+1)(1+xn)n+1=exB=limn(1+xn)ndx=exdx=exsoA=B...
Answered by prakash jain last updated on 18/Oct/16
Limit and integral exhange is NOT  always allowed.  It is permitted if the function converges  uniformly.  123456 may be able provide more inputs.
LimitandintegralexhangeisNOTalwaysallowed.Itispermittedifthefunctionconvergesuniformly.123456maybeableprovidemoreinputs.
Commented by sou1618 last updated on 19/Oct/16
thanks.
thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *