Menu Close

is-it-correct-when-S-n-1-2-1-3-1-4-1-5-1-n-2-3-2-4-2-5-2-n-3-4-3-5-3-n-4-5-4-n-




Question Number 8139 by sou1618 last updated on 01/Oct/16
is it correct?  when  S_n ={  1×2+1×3+1×4+1×5+.......+1×n            +2×3+2×4+2×5+.......+2×n                          +3×4+3×5+.......+3×n                                         +4×5+.......+4×n                                             ....                                                                      +(n−1)×n  }  find S_n  .  ///////////////  S_n +S_n +(1^2 +2^2 +3^2 +4^2 +...+n^2 )={  1×1+1×2+1×3+1×4+.......+1×n+  2×1+2×2+2×3+2×4+.......+2×n+  3×1+3×2+3×3+3×4+.......+3×n+  4×1+4×1+4×3+4×4+.......+4×n+  ...  n×1+n×2+n×3+n×4+......+n×n }  ⇔  =(1+2+3+4+...+n)(1+2+3+4+...+n)  ⇔  2S_n +((n(n+1)(2n+1))/6)={((n(n+1))/2)}^2   2S_n =((n(n+1))/2){((n(n+1))/2)−((2n+1)/3)}  =((n(n+1))/2)×((3n^2 −n−2)/6)  S_n =((n(n+1))/4)×(((3n+2)(n−1))/6)  S_n =(((n−1)n(n+1)(3n+2))/(24))
isitcorrect?whenSn={1×2+1×3+1×4+1×5+.+1×n+2×3+2×4+2×5+.+2×n+3×4+3×5+.+3×n+4×5+.+4×n.+(n1)×n}findSn.///////////////Sn+Sn+(12+22+32+42++n2)={1×1+1×2+1×3+1×4+.+1×n+2×1+2×2+2×3+2×4+.+2×n+3×1+3×2+3×3+3×4+.+3×n+4×1+4×1+4×3+4×4+.+4×n+n×1+n×2+n×3+n×4++n×n}=(1+2+3+4++n)(1+2+3+4++n)2Sn+n(n+1)(2n+1)6={n(n+1)2}22Sn=n(n+1)2{n(n+1)22n+13}=n(n+1)2×3n2n26Sn=n(n+1)4×(3n+2)(n1)6Sn=(n1)n(n+1)(3n+2)24
Commented by prakash jain last updated on 01/Oct/16
This is correct. I will update my answer.  and check for mistakes.
Thisiscorrect.Iwillupdatemyanswer.andcheckformistakes.
Commented by prakash jain last updated on 01/Oct/16
Thanks. I have also corrected my answer.  I had started wrong.  The sum is Σ_(j=1) ^(n−1) [Σ_(i=j+1) ^n j∙i]  earlier i had started wrongly  Σ_(j=1) ^(n−1) [Σ_(i=j+1) ^n i(i+1)]
Thanks.Ihavealsocorrectedmyanswer.Ihadstartedwrong.Thesumisn1j=1[ni=j+1ji]earlierihadstartedwronglyn1j=1[ni=j+1i(i+1)]
Commented by sou1618 last updated on 02/Oct/16
thanks!
thanks!
Commented by 314159 last updated on 02/Oct/16
thanks!
thanks!
Answered by prakash jain last updated on 02/Oct/16
answer in question
answerinquestion

Leave a Reply

Your email address will not be published. Required fields are marked *