Is-it-possible-to-find-any-value-for-a-b-c-from-below-system-of-equetions-sina-sinb-sinc-cosa-cosb-cosc- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 68414 by behi83417@gmail.com last updated on 10/Sep/19 Isitpossibletofindanyvaluefora,b,cfrombelowsystemofequetions?{sina+sinb=sinccosa+cosb=cosc Commented by kaivan.ahmadi last updated on 10/Sep/19 {sinacosa+sinbcosa=sinccosa−sinacosa−sinacosb=−sinacosc⇒sinbcosa−sinacosb=sinccosa−sinacosc⇒sin(b−a)=sin(c−a)⇒{b−a=2kπ+(c−a)b−a=(2k+1)π+(a−c)⇒{b−c=2kπb−2a+c=(2k+1)π Answered by Tanmay chaudhury last updated on 10/Sep/19 2sin(a+b2)cos(a−b2)=sinc2cos(a+b2)cos(a−b2)=cosctan(a+b2)=tanca+bc=nπ+ca+b=2nπ+2c….(1)4sin2(a+b2)cos2(a−b2)=sin2c4cos2(a+b2)cos2(a−b2)=cos2caddthem4cos2(a−b2)=1cos(a−b2)=±12cosidering+signcos(a−b2)=cos(π3)a−b2=2nπ+π3cos(a−b2)=−12=cos(π+π3)(a−b2)=2nπ+π+π3orcos(a−b2)=−12=cos(π−π3)a−b2=2nπ+2π3thuswecanfindvalueofaandbintermsofc Answered by mr W last updated on 10/Sep/19 sin2a+sin2b+2sinasinb=sin2ccos2a+cos2b+2cosacosb=cos2c2+2(sinasinb+cosacosb)=1sinasinb+cosacosb=−12cos(a−b)=−12⇒a−b=(2n+1)π±π3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: V-ln-x-1-x-2-dx-Next Next post: Question-133949 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.