Menu Close

Is-necessary-and-suficient-for-two-inequalities-to-be-equivalent-If-a-gt-b-Are-A-gt-B-and-A-a-gt-B-b-equivalent-




Question Number 1937 by Rasheed Soomro last updated on 25/Oct/15
•Is   ′⇔′  necessary and suficient for two  inequalities to be equivalent?  •If  a>b :  Are  A>B and A+a > B+b equivalent?
$$\bullet{Is}\:\:\:'\Leftrightarrow'\:\:{necessary}\:{and}\:{suficient}\:{for}\:{two} \\ $$$${inequalities}\:{to}\:{be}\:{equivalent}? \\ $$$$\bullet{If}\:\:\boldsymbol{\mathrm{a}}>\boldsymbol{\mathrm{b}}\:: \\ $$$${Are}\:\:\boldsymbol{\mathrm{A}}>\boldsymbol{\mathrm{B}}\:{and}\:\boldsymbol{\mathrm{A}}+\boldsymbol{\mathrm{a}}\:>\:\boldsymbol{\mathrm{B}}+\boldsymbol{\mathrm{b}}\:{equivalent}? \\ $$
Answered by 123456 last updated on 25/Oct/15
(a,b,A,B)∈R^4   a>b∧A>B⇒A+a>B+b  −−−−−−−−−−  a>b   A+a>A+b (+A)  B+a>B+b (+B)  A>B  A+a>B+a (+a)  A+b>B+b (+b)  A+a>B+a>B+b  −−−−−  a>b∧A+a>B+b⇏A>B  −−−−−−  A=B=0⇒a>b⇒A+a=a>b=B+b
$$\left({a},{b},\mathrm{A},\mathrm{B}\right)\in\mathbb{R}^{\mathrm{4}} \\ $$$${a}>{b}\wedge\mathrm{A}>\mathrm{B}\Rightarrow\mathrm{A}+{a}>\mathrm{B}+{b} \\ $$$$−−−−−−−−−− \\ $$$${a}>{b}\: \\ $$$$\mathrm{A}+{a}>\mathrm{A}+{b}\:\left(+\mathrm{A}\right) \\ $$$$\mathrm{B}+{a}>\mathrm{B}+{b}\:\left(+\mathrm{B}\right) \\ $$$$\mathrm{A}>\mathrm{B} \\ $$$$\mathrm{A}+{a}>\mathrm{B}+{a}\:\left(+{a}\right) \\ $$$$\mathrm{A}+{b}>\mathrm{B}+{b}\:\left(+{b}\right) \\ $$$$\mathrm{A}+{a}>\mathrm{B}+{a}>\mathrm{B}+{b} \\ $$$$−−−−− \\ $$$${a}>{b}\wedge\mathrm{A}+{a}>\mathrm{B}+{b}\nRightarrow\mathrm{A}>\mathrm{B} \\ $$$$−−−−−− \\ $$$$\mathrm{A}=\mathrm{B}=\mathrm{0}\Rightarrow{a}>{b}\Rightarrow\mathrm{A}+{a}={a}>{b}=\mathrm{B}+{b} \\ $$
Commented by Rasheed Soomro last updated on 25/Oct/15
That means adding same−sense inequality to  given  inequality doesn′t yeild equivalent inequality.    Equivalent inequality may be achieved only  by:  •Adding (Subtracting)an equation_(−)  to(from) both sides of an inequality.  •Multiplying/Dividing  an equation_(−)  to both sides of an inequality.  Am I correct?
$${That}\:{means}\:{adding}\:\boldsymbol{\mathrm{same}}−\boldsymbol{\mathrm{sense}}\:{inequality}\:{to}\:\:{given} \\ $$$${inequality}\:{doesn}'{t}\:{yeild}\:{equivalent}\:{inequality}. \\ $$$$ \\ $$$${Equivalent}\:{inequality}\:{may}\:{be}\:{achieved}\:\boldsymbol{\mathrm{only}}\:\:{by}: \\ $$$$\bullet{Adding}\:\left({Subtracting}\right){an}\:\underset{−} {{equation}}\:{to}\left({from}\right)\:{both}\:{sides}\:{of}\:{an}\:{inequality}. \\ $$$$\bullet{Multiplying}/{Dividing}\:\:{an}\:\underset{−} {{equation}}\:{to}\:{both}\:{sides}\:{of}\:{an}\:{inequality}. \\ $$$${Am}\:{I}\:{correct}? \\ $$
Commented by prakash jain last updated on 25/Oct/15
Multiplying and dividing an equatily by  same value may reverse the sign and equality.
$$\mathrm{Multiplying}\:\mathrm{and}\:\mathrm{dividing}\:\mathrm{an}\:\mathrm{equatily}\:\mathrm{by} \\ $$$$\mathrm{same}\:\mathrm{value}\:\mathrm{may}\:\mathrm{reverse}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{and}\:\mathrm{equality}. \\ $$
Commented by Rasheed Soomro last updated on 28/Oct/15
Of course sir!
$${Of}\:{course}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *