Menu Close

is-possible-to-proof-that-f-x-e-cx-obey-f-x-y-f-x-f-y-using-e-x-n-0-x-n-n-




Question Number 4962 by 123456 last updated on 27/Mar/16
is possible to proof that  f(x)=e^(cx)   obey  f(x+y)=f(x)f(y)  using  e^x =Σ_(n=0) ^(+∞) (x^n /(n!))  ?
ispossibletoproofthatf(x)=ecxobeyf(x+y)=f(x)f(y)usingex=+n=0xnn!?
Commented by 123456 last updated on 27/Mar/16
e^(x+y) =Σ_(n=0) ^(+∞) (((x+y)^n )/(n!))  =Σ_(n=0) ^(+∞) (1/(n!))Σ_(m=0) ^n  ((n),(m) )x^m y^(n−m)   =Σ_(n=0) ^(+∞) (1/(n!))Σ_(m=0) ^n ((n!)/(m!(n−m)!))x^m y^(n−m)   =Σ_(n=0) ^(+∞) Σ_(m=0) ^n (1/(m!(n−m)!))x^m y^(n−m)
ex+y=+n=0(x+y)nn!=+n=01n!nm=0(nm)xmynm=+n=01n!nm=0n!m!(nm)!xmynm=+n=0nm=01m!(nm)!xmynm
Commented by prakash jain last updated on 08/Jan/17
e^(x+y) =Σ_(i=0) ^∞ (((x+y)^i )/(i!))  (x+y)^m = Σ_(i=0) ^m ^m C_i x^i y^(m−i)   coefficient of x^k  in e^(x+y)   Σ_(m=k) ^∞  (1/(m!))∙((m!)/(k!(m−k)!)) y^(m−k) =(1/(k!))Σ_(m=k) ^∞ (y^(m−k) /((m−k)!))  =(1/(k!))Σ_(m=0) ^∞  (y^m /(m!)) = (e^y /(k!))  so e^(x+y) =Σ_(k=0) ^∞ (e^y /(k!))x^k =e^y e^x
ex+y=i=0(x+y)ii!(x+y)m=mi=0mCixiymicoefficientofxkinex+ym=k1m!m!k!(mk)!ymk=1k!m=kymk(mk)!=1k!m=0ymm!=eyk!soex+y=k=0eyk!xk=eyex

Leave a Reply

Your email address will not be published. Required fields are marked *