Question Number 4365 by Filup last updated on 13/Jan/16
$$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{correct}? \\ $$$$ \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}−\mathrm{1}} \\ $$$${S}=\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+\mathrm{32}+\mathrm{64}+\mathrm{128}+… \\ $$$$\therefore\mathrm{2}{S}=\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{6}+\mathrm{32}+… \\ $$$$\mathrm{2}{S}={S}−\mathrm{1} \\ $$$${S}=−\mathrm{1} \\ $$
Commented by Filup last updated on 13/Jan/16
$${or} \\ $$$${S}=\underset{{i}={n}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$${S}=\mathrm{2}^{{n}} +\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} +… \\ $$$$\mathrm{2}{S}=\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} +\mathrm{2}^{{n}+\mathrm{3}} +… \\ $$$$\mathrm{2}{S}={S}−\mathrm{2}^{{n}} \\ $$$$\therefore{S}=−\mathrm{2}^{{n}} \\ $$$$ \\ $$$${can}\:{be}\:{taken}\:{further}: \\ $$$${S}=\underset{{i}={n}} {\overset{\infty} {\sum}}{a}^{{i}} \\ $$$${S}={a}^{{n}} +{a}^{{n}+\mathrm{1}} +{a}^{{n}+\mathrm{2}} +… \\ $$$${aS}={a}^{{n}+\mathrm{1}} +{a}^{{n}+\mathrm{2}} +{a}^{{n}+\mathrm{3}} +… \\ $$$${aS}={S}−{a}^{{n}} \\ $$$${S}=−\frac{{a}^{{n}} }{{a}−\mathrm{1}} \\ $$$$\therefore{S}=\frac{{a}^{{n}} }{\mathrm{1}−{a}} \\ $$
Commented by Filup last updated on 13/Jan/16
$$\mathrm{is}\:\:\:{S}=\frac{{a}^{{n}} }{\mathrm{1}−{a}}\:\:\:\mathrm{only}\:\mathrm{true}\:\mathrm{as}\:\mathrm{a}\:\mathrm{limiting}\:\mathrm{sum}? \\ $$$$\mathrm{or}\:\mathrm{is}\:\mathrm{it}\:\mathrm{an}\:\mathrm{analytical}\:\mathrm{solution}? \\ $$
Commented by Yozzii last updated on 13/Jan/16
$${S}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{{i}−\mathrm{1}} =\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +… \\ $$$${xS}\left({x}\right)={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +… \\ $$$$\therefore\left(\mathrm{1}−{x}\right){S}\left({x}\right)=\mathrm{1} \\ $$$${S}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}}.\:{This}\:{assumes}\:{x}\neq\mathrm{1}\: \\ $$$${and}\:{that}\:{S}\left({x}\right),\:{being}\:{the}\:{limit}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{{i}−\mathrm{1}} , \\ $$$${exists}.\: \\ $$$${Now},{let}\:{S}\left({x},{n}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}^{{i}−\mathrm{1}} =\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}\:\:\left({x}\neq\mathrm{1}\right) \\ $$$${S}\left({x},{n}\right)=\frac{{x}^{{n}} }{{x}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}−{x}}. \\ $$$${If}\:\mid{x}\mid>\mathrm{1}\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}^{{n}} \:{does}\:{not}\:{exist}.\: \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}\left({x},{n}\right)\:{does}\:{not}\:{exist}.\:{So},\:{if}\:{x}=\mathrm{2}>\mathrm{1} \\ $$$${S}\:{does}\:{not}\:{have}\:{a}\:{limit}\:{so}\:{that}\:{S}\neq−\mathrm{1}. \\ $$$$ \\ $$$${It}'{s}\:{interesting}\:{how}\:{you}'{ve}\:{shown} \\ $$$${S}=−\mathrm{1}.\:{But}\:{by}\:{the}\:{concept}\:{of}\:{number} \\ $$$${as}\:{a}\:{vector}\:{how}\:{can}\:{the}\:{infinite} \\ $$$${sum}\:{of}\:{positive}\:{numbers}\:\left({vectors}\right)\: \\ $$$${give}\:{a}\:{negative}\:{number}\:\left({opposite}\:{vector}\right. \\ $$$$\left.{direction}\right)? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by prakash jain last updated on 13/Jan/16
$${S}=−\mathrm{1}\:\mathrm{using}\:\mathrm{analytical}\:\mathrm{continuity}. \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$
Commented by malwaan last updated on 14/Jan/16
$${I}\:{think}\:{s}=−\mathrm{1}\:{is}\:{wronge} \\ $$