Menu Close

Is-the-following-correct-S-i-1-2-i-1-S-1-2-4-8-16-32-64-128-2S-2-4-8-6-32-2S-S-1-S-1-




Question Number 4365 by Filup last updated on 13/Jan/16
Is the following correct?    S=Σ_(i=1) ^∞ 2^(i−1)   S=1+2+4+8+16+32+64+128+...  ∴2S=2+4+8+6+32+...  2S=S−1  S=−1
Isthefollowingcorrect?S=i=12i1S=1+2+4+8+16+32+64+128+2S=2+4+8+6+32+2S=S1S=1
Commented by Filup last updated on 13/Jan/16
or  S=Σ_(i=n) ^∞ 2^i   S=2^n +2^(n+1) +2^(n+2) +...  2S=2^(n+1) +2^(n+2) +2^(n+3) +...  2S=S−2^n   ∴S=−2^n     can be taken further:  S=Σ_(i=n) ^∞ a^i   S=a^n +a^(n+1) +a^(n+2) +...  aS=a^(n+1) +a^(n+2) +a^(n+3) +...  aS=S−a^n   S=−(a^n /(a−1))  ∴S=(a^n /(1−a))
orS=i=n2iS=2n+2n+1+2n+2+2S=2n+1+2n+2+2n+3+2S=S2nS=2ncanbetakenfurther:S=i=naiS=an+an+1+an+2+aS=an+1+an+2+an+3+aS=SanS=ana1S=an1a
Commented by Filup last updated on 13/Jan/16
is   S=(a^n /(1−a))   only true as a limiting sum?  or is it an analytical solution?
isS=an1aonlytrueasalimitingsum?orisitananalyticalsolution?
Commented by Yozzii last updated on 13/Jan/16
S(x)=Σ_(i=1) ^∞ x^(i−1) =1+x+x^2 +x^3 +...  xS(x)=x+x^2 +x^3 +x^4 +...  ∴(1−x)S(x)=1  S(x)=(1/(1−x)). This assumes x≠1   and that S(x), being the limit of Σ_(i=1) ^∞ x^(i−1) ,  exists.   Now,let S(x,n)=Σ_(i=1) ^n x^(i−1) =((x^n −1)/(x−1))  (x≠1)  S(x,n)=(x^n /(x−1))+(1/(1−x)).  If ∣x∣>1⇒lim_(n→∞) x^n  does not exist.   ⇒lim_(n→∞) S(x,n) does not exist. So, if x=2>1  S does not have a limit so that S≠−1.    It′s interesting how you′ve shown  S=−1. But by the concept of number  as a vector how can the infinite  sum of positive numbers (vectors)   give a negative number (opposite vector  direction)?
S(x)=i=1xi1=1+x+x2+x3+xS(x)=x+x2+x3+x4+(1x)S(x)=1S(x)=11x.Thisassumesx1andthatS(x),beingthelimitofi=1xi1,exists.Now,letS(x,n)=ni=1xi1=xn1x1(x1)S(x,n)=xnx1+11x.Ifx∣>1limnxndoesnotexist.limnS(x,n)doesnotexist.So,ifx=2>1SdoesnothavealimitsothatS1.ItsinterestinghowyouveshownS=1.Butbytheconceptofnumberasavectorhowcantheinfinitesumofpositivenumbers(vectors)giveanegativenumber(oppositevectordirection)?
Commented by prakash jain last updated on 13/Jan/16
S=−1 using analytical continuity.  f(x)=(1/(1−x))
S=1usinganalyticalcontinuity.f(x)=11x
Commented by malwaan last updated on 14/Jan/16
I think s=−1 is wronge
Ithinks=1iswronge

Leave a Reply

Your email address will not be published. Required fields are marked *