Menu Close

Is-the-following-series-convergent-i-1-sin-i-i-




Question Number 2722 by prakash jain last updated on 25/Nov/15
Is the following series convergent  Σ_(i=1) ^∞  ((sin i)/i)
Isthefollowingseriesconvergenti=1sinii
Answered by Filup last updated on 25/Nov/15
no    for x∈(−∞,∞)  −1≤sin x≤1
noforx(,)1sinx1
Answered by prakash jain last updated on 25/Nov/15
∫_0 ^( ∞)  ((sin x)/x) dx=(π/2)  ∫_1 ^( ∞)  ((sin x)/x) dx=(π/2)−Si(1)  As the integral converges, the series is  convergent.  Update: Wrong test used. The above  argument does not prove covergence.
0sinxxdx=π21sinxxdx=π2Si(1)Astheintegralconverges,theseriesisconvergent.Update:Wrongtestused.Theaboveargumentdoesnotprovecovergence.
Commented by Yozzi last updated on 26/Nov/15
I conjectured that if we let  u_n =((sini)/i)+((sin(i+1))/(i+1))+((sin(i+2))/(i+2)) and   u_(n+1) =((sin(i+3))/(i+3))+((sin(i+4))/(i+4))+((sin(i+5))/(i+5))  for Σ_(i=1) ^∞ ((sini)/i)=u_1 +u_2 +u_3 +...  {u_n } is an alternating sequence.  Yes. I think your u_j  is alternating.
Iconjecturedthatifweletun=sinii+sin(i+1)i+1+sin(i+2)i+2andun+1=sin(i+3)i+3+sin(i+4)i+4+sin(i+5)i+5fori=1sinii=u1+u2+u3+{un}isanalternatingsequence.Yes.Ithinkyourujisalternating.
Commented by prakash jain last updated on 26/Nov/15
Σ_(n=1) ^∞ ((sin n)/n)=Σ_(j=1) ^∞ u_j   u_j =Σ_(k=⌈π(j−1)⌉) ^(⌊πj⌋) ((sin k)/k)  is Σ_(j=1) ^∞ u_j  an alternating series?
n=1sinnn=j=1ujuj=πjk=π(j1)sinkkisj=1ujanalternatingseries?
Commented by Filup last updated on 25/Nov/15
My mistake. I Was thinking  incorrectly  i was thinking of Σ(sin x)
Mymistake.IWasthinkingincorrectlyiwasthinkingofΣ(sinx)
Commented by Yozzi last updated on 25/Nov/15
f(x)=((sinx)/x) is not a positive,monotonically  decreasing function ∀x∈[1,∞) to  use the integral test.
f(x)=sinxxisnotapositive,monotonicallydecreasingfunctionx[1,)tousetheintegraltest.
Commented by prakash jain last updated on 25/Nov/15
Ok. You are right.  How to prove that Σ_(i=1) ^∞ sin(x)/x is convergent?
Ok.Youareright.Howtoprovethati=1sin(x)/xisconvergent?
Commented by Yozzi last updated on 25/Nov/15
Alternating series test:   For an infinite series Σ_(n=1) ^∞ u_(n ) of alternating  terms the following conditions are  required for convergence:  (1) ∣u_(n+1) ∣≤∣u_n ∣ for n≥N  (2) lim_(n→∞) u_n =0 (or lim_(n→∞) ∣u_n ∣=0)
Alternatingseriestest:Foraninfiniteseriesn=1unofalternatingtermsthefollowingconditionsarerequiredforconvergence:(1)un+1∣⩽∣unfornN(2)limnun=0(orlimnun∣=0)
Commented by prakash jain last updated on 25/Nov/15
The series is not alternating either.
Theseriesisnotalternatingeither.
Commented by Yozzi last updated on 25/Nov/15
true...
true
Commented by prakash jain last updated on 26/Nov/15
Based on your suggestion I was trying to  come up with an equivalent alternating  series.
BasedonyoursuggestionIwastryingtocomeupwithanequivalentalternatingseries.
Answered by Yozzi last updated on 26/Nov/15
Consider the series T=Σ_(i=1) ^∞ ((sinix)/i) (x≠±π).  Dirichlet′s test may be used to prove  that T is uniformly convergent in  an interval a≤x≤b.  Suppose that:  (1) {a_n } is a sequence of positive   constants that are monotonic  decreasing,having a limit of zero;  (2) ∃P (constant) such that for  a≤x≤b, ∣Σ_(r=1) ^n u_r (x)∣<P  ,∀n>N.  Then, the series Σ_(n=1) ^∞ a_n u_n (x) is   uniformly convergent on the interval  a≤x≤b.  Let u_i (x)=sinix, a_i =(1/i)  (i∈N).  (1)For the sequence {a_i }, its terms   are monotonic decreasing and  positive.  lim_(i→∞) a_i =lim_(i→∞) (1/i)=(1/∞)=0.  (2)Suppose 1≤x≤(π/2) and define S=Σ_(i=1) ^n u_i (x).  (sin(x/2))S=Σ_(r=1) ^n sinixsin(x/2).  (1≤x≤(π/2))  Since −2sinixsin(x/2)=cos(i+(1/2))x−cos(i−(1/2))x  ⇒sinixsin(x/2)=((−1)/2){f(r)−f(r−1)}  where f(r)=cos(i+(1/2))x   (i∈N).  ∴Ssin(x/2)=((−1)/2)Σ_(i=1) ^n {f(r)−f(r−1)}  −2Ssin(x/2)=f(1)−f(0)+f(2)−f(1)+  f(3)−f(2)+f(4)−f(3)+f(5)−f(4)+  ...+f(n−3)−f(n−4)+f(n−2)−f(n−3)  +f(n−1)−f(n−2)+f(n)−f(n−1)  −2Ssin(x/2)=f(n)−f(0)  ⇒S=((f(0)−f(n))/(2sin(x/2)))  S=((cos(x/2)−cos(n+(1/2))x)/(2sin(x/2)))  −(cos(n+(1/2))x−cos(x/2))  =−(−2sin((n+(1/2)+(1/2))/2)xsin((n+(1/2)−(1/2))/2)x)  =2sin((n+1)/2)xsin((nx)/2)  ∴S=((sin((nx)/2)sin((n+1)/2)x)/(sin(x/2)))=((1/(sin(x/2))))sin((nx)/2)sin((n+1)/2)x  ∴∣S∣=∣(1/(sin(x/2)))sin((n+1)/2)sin((nx)/2)∣  Since 1≤x≤(π/2)⇒(1/2)≤(x/2)≤(π/4)⇒sin(x/2)≥sin(1/2) for 1≤x≤(π/2).  ∴∣S∣=cosec(x/2)∣sin((nx)/2)sin((n+1)/2)x∣  Now∣sin(u/2)∣<1 for ∀u∈R  ⇒cosec(x/2)∣sin((nx)/2)sin((n+1)/2)x∣<(1/(sin(x/2))) ∀n>1  ⇒ ∣S∣<(1/(sin(x/2)))  ∀n>1 (N=1)  max(sin(x/2)) for 1≤x≤(π/2) is sin(π/4)=(1/( (√2)))  ⇒∣S∣<(√2) ⇒P=(√2) for 1≤x≤(π/2).  So, conditions (1) and (2) are satisfied.  Hence, by Dirichlet′s test,  Σ_(i=1) ^∞ ((sinix)/i) is uniformly convergent  in the interval 1≤x≤(π/2). Hence, if x=1,  Σ_(i=1) ^∞ ((sini)/i) is uniformly convergent.    (I tried part (2) but I know the approach  is incorrect.)
ConsidertheseriesT=i=1sinixi(x±π).DirichletstestmaybeusedtoprovethatTisuniformlyconvergentinanintervalaxb.Supposethat:(1){an}isasequenceofpositiveconstantsthataremonotonicdecreasing,havingalimitofzero;(2)P(constant)suchthatforaxb,nr=1ur(x)∣<P,n>N.Then,theseriesn=1anun(x)isuniformlyconvergentontheintervalaxb.Letui(x)=sinix,ai=1i(iN).(1)Forthesequence{ai},itstermsaremonotonicdecreasingandpositive.limiai=limi1i=1=0.(2)Suppose1xπ2anddefineS=ni=1ui(x).(sinx2)S=nr=1sinixsinx2.(1xπ2)Since2sinixsinx2=cos(i+12)xcos(i12)xsinixsinx2=12{f(r)f(r1)}wheref(r)=cos(i+12)x(iN).Ssinx2=12ni=1{f(r)f(r1)}2Ssinx2=f(1)f(0)+f(2)f(1)+f(3)f(2)+f(4)f(3)+f(5)f(4)++f(n3)f(n4)+f(n2)f(n3)+f(n1)f(n2)+f(n)f(n1)2Ssinx2=f(n)f(0)S=f(0)f(n)2sinx2S=cosx2cos(n+12)x2sinx2(cos(n+12)xcosx2)=(2sinn+12+122xsinn+12122x)=2sinn+12xsinnx2S=sinnx2sinn+12xsinx2=(1sinx2)sinnx2sinn+12x∴∣S∣=∣1sinx2sinn+12sinnx2Since1xπ212x2π4sinx2sin12for1xπ2.∴∣S∣=cosecx2sinnx2sinn+12xNowsinu2∣<1foruRcosecx2sinnx2sinn+12x∣<1sinx2n>1S∣<1sinx2n>1(N=1)max(sinx2)for1xπ2issinπ4=12⇒∣S∣<2P=2for1xπ2.So,conditions(1)and(2)aresatisfied.Hence,byDirichletstest,i=1sinixiisuniformlyconvergentintheinterval1xπ2.Hence,ifx=1,i=1siniiisuniformlyconvergent.(Itriedpart(2)butIknowtheapproachisincorrect.)
Commented by prakash jain last updated on 26/Nov/15
Innovative!  The series in question could start  with sinisin 0.5 (x=1).  However you have proved more generic case.  Your approach looks correct to me.  Why do you think it is wrong?
Innovative!Theseriesinquestioncouldstartwithsinisin0.5(x=1).Howeveryouhaveprovedmoregenericcase.Yourapproachlookscorrecttome.Whydoyouthinkitiswrong?
Commented by Yozzi last updated on 26/Nov/15
This area is new to me and I haven′t  mastered method of proof yet. But  I′m glad you see no issues with it :).
ThisareaisnewtomeandIhaventmasteredmethodofproofyet.ButImgladyouseenoissueswithit:).

Leave a Reply

Your email address will not be published. Required fields are marked *