Menu Close

Is-the-section-marked-correct-i-1-x-i-x-n-1-x-i-1-n-i-1-2-x-1-1-2-1-2-3-1-2-x-1-x-2-x-1-3-x-2-x-1-2-x-1-m-1-x-n-1-m-i-1-




Question Number 4639 by FilupSmith last updated on 17/Feb/16
Is the section marked (∗) correct?    Π_(i=1) ^x i=x!    Π_(n=1) ^x (Π_(i=1) ^n i)=1!×2!×...×x!  =1×(1×2)×(1×2×3)×...×(1×2×...×x)  =1^x 2^(x−1) 3^(x−2) ...(x−1)^2 x^1     (∗)  Π_(m=1) ^x (Π_(n=1) ^m (Π_(i=1) ^n i))=Π_(m=1) ^x (1^m 2^(m−1) ...(m−1)^2 m)  =1×(1^2 2^1 )×(1^3 2^2 3^1 )×(1^4 2^3 3^2 4^1 )×...×(1^x 2^(x−1) ...x^1 )  =1^(Σ_(i=x−0) ^x i) ×2^(Σ_(i=x−1) ^x i) ×3^(Σ_(i=x−2) ^x i) ×...(x−1)^(Σ_(i=x−(x−1)+1) ^x i) ×x^(Σ_(i=x−x+1) ^x i)   =Π_(i=1) ^x (i^((Σ_(k=x−i+1) ^x k)) )  =Π_(i=1) ^x i^((1/2)x(2x−i+1))   =Π_(i=1) ^x i^(x^2 +(1/2)(1−i))   =Π_(i=1) ^x i^((x^2 )) (√i^(1−i) )    ∴ Π_(m=1) ^x (Π_(n=1) ^m (Π_(i=1) ^n i))=Π_(i=1) ^x i^((1/2)x(2x−i+1))
Isthesectionmarked()correct?xi=1i=x!xn=1(ni=1i)=1!×2!××x!=1×(1×2)×(1×2×3)××(1×2××x)=1x2x13x2(x1)2x1()xm=1(mn=1(ni=1i))=xm=1(1m2m1(m1)2m)=1×(1221)×(132231)×(14233241)××(1x2x1x1)=1xi=x0i×2xi=x1i×3xi=x2i×(x1)xi=x(x1)+1i×xxi=xx+1i=xi=1(i(xk=xi+1k))=xi=1i12x(2xi+1)=xi=1ix2+12(1i)=xi=1i(x2)i1ixm=1(mn=1(ni=1i))=xi=1i12x(2xi+1)
Commented by Yozzii last updated on 17/Feb/16
How is 1×1^2 ×1^3 ×...×1^(x−1) ×1^x =1^(Σ_(i=x−0) ^x i) ?  I′m only questioning the pattern  although the equation is right.
Howis1×12×13××1x1×1x=1xi=x0i?Imonlyquestioningthepatternalthoughtheequationisright.
Commented by FilupSmith last updated on 18/Feb/16
Because:  a^x ×a^y =a^(x+y)   ∴1×1^2 ×1^3 ×...×1^x =1^(1+2+3+...+x)   =1^(Σ_(i=1) ^x i)
Because:ax×ay=ax+y1×12×13××1x=11+2+3++x=1xi=1i
Commented by FilupSmith last updated on 18/Feb/16
1×(1^2 2^1 )×(1^3 2^2 3^1 )×(1^4 2^3 3^2 4^1 )×...×(1^x 2^(x−1) ...x^1 )  =(1×1^2 ×...1^x )×(2^2 ×...×2^x )×(3^3 ×...×3^x )...    for 1^(Σ_(k=1) ^x k) =1^1 =1^(Σ_(k=1) ^x k) =1^(Σ_(k=1) ^x k)   for 2^(Σ_(k=2) ^x k) =2^(Σ_(k=2) ^x k) =2^(2+3+...+x)     But...  Π_(m=1) ^x (Π_(n=1) ^m (Π_(i=1) ^n i)) The red part changes the  value for x for each section:  1_(x=1) ×(1^2 2^1 )_(x=2) ×(1^3 2^2 3^3 )_(x=3) ×...×(1^x 2^(x−1) ...x)_(x=x)
1×(1221)×(132231)×(14233241)××(1x2x1x1)=(1×12×1x)×(22××2x)×(33××3x)for1xk=1k=11=1xk=1k=1xk=1kfor2xk=2k=2xk=2k=22+3++xButxm=1(mn=1(ni=1i))Theredpartchangesthevalueforxforeachsection:1x=1×(1221)x=2×(132233)x=3××(1x2x1x)x=x
Commented by FilupSmith last updated on 18/Feb/16
i was tired when i wrote this post  so i dont remember my logic
iwastiredwheniwrotethispostsoidontremembermylogic
Commented by FilupSmith last updated on 18/Feb/16
After re reading this i have concluded  that the answer is incorrect and should be:  =Π_(i=1) ^x i^(Σ_(k=1) ^(x−i+1) k)   =Π_(i=1) ^x i^((1/2)(x−i+1)(x−i+2))
Afterrereadingthisihaveconcludedthattheanswerisincorrectandshouldbe:=xi=1ixi+1k=1k=xi=1i12(xi+1)(xi+2)

Leave a Reply

Your email address will not be published. Required fields are marked *