Menu Close

is-there-a-function-f-R-2-R-such-that-f-x-f-x-y-f-f-x-y-y-f-x-y-




Question Number 2514 by 123456 last updated on 21/Nov/15
is there a function  f:R^2 →R  such that  f[x,f(x,y)]=f[f(x,y),y]=f(x,y)  ?
$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{function} \\ $$$${f}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$${f}\left[{x},{f}\left({x},{y}\right)\right]={f}\left[{f}\left({x},{y}\right),{y}\right]={f}\left({x},{y}\right) \\ $$$$? \\ $$
Answered by prakash jain last updated on 21/Nov/15
f(x,y)=C meets all conditions. So function exists.
$${f}\left({x},{y}\right)={C}\:\mathrm{meets}\:\mathrm{all}\:\mathrm{conditions}.\:\mathrm{So}\:\mathrm{function}\:\mathrm{exists}. \\ $$
Commented by prakash jain last updated on 21/Nov/15
C constant
$${C}\:\mathrm{constant} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *