Menu Close

Is-there-a-solution-to-i-a-n-i-i-a-n-i-n-a-Z-




Question Number 3193 by Filup last updated on 07/Dec/15
Is there a solution to:  Σ_(i=a) ^n i=Π_(i=a) ^n i                (n, a)∈Z
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}: \\ $$$$\underset{{i}={a}} {\overset{{n}} {\sum}}{i}=\underset{{i}={a}} {\overset{{n}} {\prod}}{i}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({n},\:{a}\right)\in\mathbb{Z} \\ $$
Commented by Filup last updated on 07/Dec/15
Σ_(i=a) ^n i=(1/2)n(a+n)  Π_(i=a) ^n i=((n!)/((a−1)!))    ∴(1/2)n(a+n)=((n!)/((a−1)!))
$$\underset{{i}={a}} {\overset{{n}} {\sum}}{i}=\frac{\mathrm{1}}{\mathrm{2}}{n}\left({a}+{n}\right) \\ $$$$\underset{{i}={a}} {\overset{{n}} {\prod}}{i}=\frac{{n}!}{\left({a}−\mathrm{1}\right)!} \\ $$$$ \\ $$$$\therefore\frac{\mathrm{1}}{\mathrm{2}}{n}\left({a}+{n}\right)=\frac{{n}!}{\left({a}−\mathrm{1}\right)!} \\ $$
Commented by prakash jain last updated on 07/Dec/15
n=a   n=a Π_(i=a) ^n i=a=Σ_(i=a) ^n i  your formula for Σ_(i=a) ^n i is incorrect. it should  be=((n−a+1)/2)(a+n)  If n>a and a>1  a(a+1)≠a+a+1  so no solutions for n>a  n<a LHS=0=RHS
$${n}={a}\: \\ $$$${n}={a}\:\underset{{i}={a}} {\overset{{n}} {\prod}}{i}={a}=\underset{{i}={a}} {\overset{{n}} {\sum}}{i} \\ $$$${your}\:{formula}\:{for}\:\underset{{i}={a}} {\overset{{n}} {\sum}}{i}\:\mathrm{is}\:\mathrm{incorrect}.\:\mathrm{it}\:\mathrm{should} \\ $$$$\mathrm{be}=\frac{{n}−{a}+\mathrm{1}}{\mathrm{2}}\left({a}+{n}\right) \\ $$$$\mathrm{If}\:{n}>{a}\:{and}\:{a}>\mathrm{1} \\ $$$${a}\left({a}+\mathrm{1}\right)\neq{a}+{a}+\mathrm{1} \\ $$$${so}\:{no}\:{solutions}\:{for}\:{n}>{a} \\ $$$${n}<{a}\:\mathrm{LHS}=\mathrm{0}=\mathrm{RHS} \\ $$
Commented by Filup last updated on 07/Dec/15
Thanks for the correction!  What if     a,n∈R?  Same result?
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{correction}! \\ $$$$\mathrm{W}{hat}\:\mathrm{if}\:\:\:\:\:{a},{n}\in\mathbb{R}? \\ $$$${Same}\:{result}? \\ $$
Commented by Filup last updated on 07/Dec/15
What if  a+(a+1)+...+(n)=a(a+1)...n  for  (a, n)∈R
$$\mathrm{What}\:\mathrm{if} \\ $$$${a}+\left({a}+\mathrm{1}\right)+…+\left({n}\right)={a}\left({a}+\mathrm{1}\right)…{n} \\ $$$${for}\:\:\left({a},\:{n}\right)\in\mathbb{R} \\ $$
Commented by prakash jain last updated on 07/Dec/15
If a and n are real. Then you would get  a equation of degree n−a+1 with n−a+1  solutions. Some of them will be complex.
$$\mathrm{If}\:{a}\:\mathrm{and}\:{n}\:\mathrm{are}\:\mathrm{real}.\:\mathrm{Then}\:\mathrm{you}\:\mathrm{would}\:\mathrm{get} \\ $$$$\mathrm{a}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{degree}\:{n}−{a}+\mathrm{1}\:\mathrm{with}\:{n}−{a}+\mathrm{1} \\ $$$$\mathrm{solutions}.\:\mathrm{Some}\:\mathrm{of}\:\mathrm{them}\:\mathrm{will}\:\mathrm{be}\:\mathrm{complex}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *