Menu Close

Is-there-any-android-apk-compute-generating-function-GF-i-1-m-k-1-n-i-C-k-n-i-x-k-thank-you-so-much-




Question Number 142592 by malwan last updated on 02/Jun/21
Is there any android apk  compute generating function  GF = Π_(i=1) ^(m)  (Σ_(k=1) ^(n_i ) C_k ^( n_i )  x^k )  thank you so much
$${Is}\:{there}\:{any}\:{android}\:{apk} \\ $$$${compute}\:{generating}\:{function} \\ $$$${GF}\:=\:\underset{{i}=\mathrm{1}} {\overset{{m}} {\Pi}}\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}_{{i}} } {\Sigma}}{C}_{{k}} ^{\:{n}_{{i}} } \:{x}^{{k}} \right) \\ $$$${thank}\:{you}\:{so}\:{much} \\ $$
Answered by Olaf_Thorendsen last updated on 03/Jun/21
Σ_(k=1) ^n_i  C_k ^n_i  x^k  = (1+x)^n_i  −1  GF = Π_(i=1) ^m (Σ_(k=1) ^n_i  C_k ^n_i  x^k ) = Π_(i=1) ^m ((1+x)^n_i  −1)
$$\underset{{k}=\mathrm{1}} {\overset{{n}_{{i}} } {\sum}}\mathrm{C}_{{k}} ^{{n}_{{i}} } {x}^{{k}} \:=\:\left(\mathrm{1}+{x}\right)^{{n}_{{i}} } −\mathrm{1} \\ $$$$\mathrm{GF}\:=\:\underset{{i}=\mathrm{1}} {\overset{{m}} {\prod}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}_{{i}} } {\sum}}\mathrm{C}_{{k}} ^{{n}_{{i}} } {x}^{{k}} \right)\:=\:\underset{{i}=\mathrm{1}} {\overset{{m}} {\prod}}\left(\left(\mathrm{1}+{x}\right)^{{n}_{{i}} } −\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *