Menu Close

Is-there-any-pi-product-notation-rules-I-discovered-some-such-as-k-a-b-k-b-a-1-k-a-b-c-c-b-a-1-k-a-b-c-k-k-a-b-c-k-a-b-k-k-a-b-k-c-k-a-c-b




Question Number 73340 by Raxreedoroid last updated on 10/Nov/19
Is there any pi/product notation rules  I discovered some such as:  Π_(k=a) ^b [k]=((b!)/((a−1)!))  Π_(k=a) ^b [c]=c^(b−a+1)   Π_(k=a) ^b [c∙k]=Π_(k=a) ^b [c]∙Π_(k=a) ^b [k]  Π_(k=a) ^b [k+c]=Π_(k=a+c) ^(b+c) [k]  But what about this  Π_(k=a) ^b [c∙k+d]
Isthereanypi/productnotationrulesIdiscoveredsomesuchas:bk=a[k]=b!(a1)!bk=a[c]=cba+1bk=a[ck]=bk=a[c]bk=a[k]bk=a[k+c]=b+ck=a+c[k]Butwhataboutthisbk=a[ck+d]
Commented by mathmax by abdo last updated on 10/Nov/19
what means [...]?
whatmeans[]?
Commented by MJS last updated on 10/Nov/19
Π_(k=a) ^b [c×k+d]  let d=c×e  Π_(k=a) ^b [c×(k+e)]=(((b+e)!)/((a+e−1)!))c^(1−a+b) =  =Π_(k=a) ^b [c]×Π_(k=a) ^b [k+e]  if (d/c)=e∈Q\Z  Π_(k=a) ^b [k+(d/c)]=(a+(d/c))((Γ(b+(d/c)+1))/(Γ(a+(d/c)+1)))
bk=a[c×k+d]letd=c×ebk=a[c×(k+e)]=(b+e)!(a+e1)!c1a+b==bk=a[c]×bk=a[k+e]ifdc=eQZbk=a[k+dc]=(a+dc)Γ(b+dc+1)Γ(a+dc+1)

Leave a Reply

Your email address will not be published. Required fields are marked *