J-dx-1-tan-x-csc-x-cot-x-sec-x- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 134058 by john_santu last updated on 27/Feb/21 J=∫dx1+tanx+cscx+cotx+secx Answered by john_santu last updated on 27/Feb/21 J=∫dx1+sinxcosx+1sinx+cosxsinx+1cosx=∫cosxsinxsinxcosx+sin2x+cos2x+sinx=∫sinxcosx(1−sinx)(1−cosx)(sinxcosx+1+sinx)(1−sinx)(1−cosx)dx=∫sinxcosx(1−sinx)(1−cosx)dx(1+sinx+sinxcosx)(1−sinx)(1−cosx)=∫sinxcosx(1−sinx)(1−cosx)dx(1+sinx+sinxcosx)(1−sinx−cosx+sinxcosx)=∫sinxcosx(1−sinx)(1−cosx)sin2xcos2xdx=∫(1−sinx)(1−cosx)sinxcosxdx=∫(1−secx−cscx+secxcscx)dx=2∫csc2xdx−ln∣secx+tanx∣+x+ln∣cotx+cscx∣=−ln∣cot2x+csc2x∣−ln∣secx+tanx∣+ln∣cotx+cscx∣+x+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-134052Next Next post: Question-134062 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.