Menu Close

k-0-n-1-sec-2-kpi-n-n-2-




Question Number 142393 by qaz last updated on 31/May/21
Σ_(k=0) ^(n−1) sec^2 (((kπ)/n))=n^2 ......???
n1k=0sec2(kπn)=n2???
Answered by mindispower last updated on 31/May/21
=Σ_(k=0) ^(n−1) (1+tg^2 (((kπ)/n)))=n+S  S=Σ_(k=0) ^(n−1) tg^2 (((kπ)/n))=Σ_(k=1) ^(n−1) (1/(cot^2 (((kπ)/n))))withe k≠(n/2),n∉2N  n=2m+1  tg(x)=((e^(ix) −e^(−ix) )/(i(e^(ix) +e^(−ix) )))  let (Z−1)^n −(Z+1)^n =P(Z)=0  ⇒((Z−1)/(Z+1))=e^(2ik(π/n))   Z=((e^((2ikπ)/n) +1)/(1−e^((2ikπ)/n) ))=icot(((kπ)/n)),k∈[1,n−1]  We have ((P′)/P)=Σ_(k=1) ^(n−1) (1/(X−icot(((kπ)/n))))  ⇒((PP′′−p(x)′^2 )/(p^2 (x)))=Σ_(k=1) ^(n−1) −(1/((x−icot(((kπ)/n)))^2 ))  p(0)=−2  p′(0)=0,n=2m+1  p′′(z)=n(n−1)(z−1)^(n−2) −n(n−1)(z+1)^(n−2)   =−2n(n−1)  ((4n(n−1))/4)=Σ_(k=1) ^(n−1) (1/(cot^2 (((kπ)/n))))=n^2 −n  Σ_(k=0) ^(n−1) sec^2 (((kπ)/n))=n+S=n+n^2 −n=n^2   ⇔Σ_(k=0) ^(n−1) sec^2 (((kπ)/n))=n^2
=n1k=0(1+tg2(kπn))=n+SS=n1k=0tg2(kπn)=n1k=11cot2(kπn)withekn2,n2Nn=2m+1tg(x)=eixeixi(eix+eix)let(Z1)n(Z+1)n=P(Z)=0Z1Z+1=e2ikπnZ=e2ikπn+11e2ikπn=icot(kπn),k[1,n1]WehavePP=n1k=11Xicot(kπn)PPp(x)2p2(x)=n1k=11(xicot(kπn))2p(0)=2p(0)=0,n=2m+1p(z)=n(n1)(z1)n2n(n1)(z+1)n2=2n(n1)4n(n1)4=n1k=11cot2(kπn)=n2nn1k=0sec2(kπn)=n+S=n+n2n=n2n1k=0sec2(kπn)=n2
Commented by qaz last updated on 31/May/21
thank you Sir power
thankyouSirpower
Commented by mindispower last updated on 01/Jun/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *