Menu Close

L-lim-n-2-3-1-3-3-1-4-3-1-n-3-1-2-3-1-3-3-1-4-3-1-n-3-1-




Question Number 143326 by SOMEDAVONG last updated on 13/Jun/21
L= lim_(n→+∝) (((2^3 −1)(3^3 −1)(4^3 −1)...(n^3 −1))/((2^3 +1)(3^3 +1)(4^3 +1)...(n^3 +1)))
L=limn+(231)(331)(431)(n31)(23+1)(33+1)(43+1)(n3+1)
Answered by gsk2684 last updated on 13/Jun/21
((n^3 −1)/(n^3 +1))=(((n−1)/(n+1))).(((n^2 +n+1)/(n^2 −n+1)))  L=lim_(n→∞) ((1/3).(2/4).(3/5).(4/6)...((n−2)/(n−1)).((n−1)/(n+1)))((7/3).((13)/7).((21)/(13)).((31)/(21))...((n^2 +n+1)/(n^2 −n+1)))  =lim_(n→∞) (((1.2)/(n−1.n+1)))(((n^2 +n+1)/3))  =(2/3)lim_(n→∞)  ((n^2 +n+1)/(n^2 −1))=(2/3)
n31n3+1=(n1n+1).(n2+n+1n2n+1)L=limn(13.24.35.46n2n1.n1n+1)(73.137.2113.3121n2+n+1n2n+1)=limn(1.2n1.n+1)(n2+n+13)=23limnn2+n+1n21=23

Leave a Reply

Your email address will not be published. Required fields are marked *