Menu Close

L-lim-x-0-e-x-cos-x-x-1-x-3-




Question Number 141900 by iloveisrael last updated on 24/May/21
 L = lim_(x→0)  ((e^x  cos x−x−1)/x^3 ) =?
L=limx0excosxx1x3=?
Answered by Dwaipayan Shikari last updated on 24/May/21
lim_(x→0) ((e^x (cosx)−x−1)/x^3 )=((e^x (1−(x^2 /2))−x−1)/x^3 )  =((e^x −x−1−e^x (x^2 /2))/x^3 )=(((x^2 /2)+(x^3 /(3!))+O(x^4 )−(1+x+O(x^2 ))(x^2 /2))/x^3 )  O(x^n )→0    ⇒(((x^3 /(3!))−(x^3 /3))/x^3 )=−(1/6)
limx0ex(cosx)x1x3=ex(1x22)x1x3=exx1exx22x3=x22+x33!+O(x4)(1+x+O(x2))x22x3O(xn)0x33!x33x3=16
Answered by mathmax by abdo last updated on 25/May/21
f(x)=((e^x cosx−x−1)/x^3 )  we have e^x  ∼1+x+(x^2 /2)  and cosx∼1−(x^2 /2) ⇒  e^x  cosx∼(1+x+(x^2 /2))(1−(x^2 /2))=1−(x^2 /2) +x−(x^3 /2)+(x^2 /2)−(x^4 /4)  =1+x−(x^3 /2)−(x^4 /4) ⇒f(x)∼((1+x−(x^3 /2)−(x^4 /4)−x−1)/x^3 )=−(1/2)−(x/4) ⇒  lim_(x→0) f(x)=−(1/2)
f(x)=excosxx1x3wehaveex1+x+x22andcosx1x22excosx(1+x+x22)(1x22)=1x22+xx32+x22x44=1+xx32x44f(x)1+xx32x44x1x3=12x4limx0f(x)=12

Leave a Reply

Your email address will not be published. Required fields are marked *