Menu Close

L-sin-2-t-




Question Number 5629 by LMTV last updated on 23/May/16
L(sin^2 t)=?
L(sin2t)=?
Commented by FilupSmith last updated on 23/May/16
Laplace transform?
Laplacetransform?
Commented by LMTV last updated on 23/May/16
yes >⌣<
yes><
Commented by FilupSmith last updated on 23/May/16
L(sin^2 t)=∫_0 ^( ∞) e^(−st) sin^2 (t)dt  sin^2 t=(1/2)(1−cos(2t))  L(sin^2 t)=(1/2)∫_0 ^( ∞) e^(−st) (1−cos(2t))dt  unsure how to solve
L(sin2t)=0estsin2(t)dtsin2t=12(1cos(2t))L(sin2t)=120est(1cos(2t))dtunsurehowtosolve
Commented by Yozzii last updated on 23/May/16
e^((a+bi)x) =e^(ax) e^(bix) =e^(ax) (cosbx+isinbx)  ⇒Re∫e^((a+bi)x) dx=∫e^(ax) cosbxdx  ∴∫e^(ax) cosbxdx=Re((1/(a+bi))e^((a+bi)x) )+C  ∫e^(ax) cosbxdx=Re((((a−bi)e^((a+bi)x) )/(a^2 +b^2 )))+C  ∫e^(ax) cosbxdx=((e^(ax) (acosbx+bsinbx))/(a^2 +b^2 ))+C  Let a=−s and b=2.  ∴∫e^(−sx) cos2xdx=((e^(−sx) (2sin2x−scos2x))/(s^2 +4))+C  ∴L(sin^2 t)=(1/2)lim_(m→∞) (((−e^(−st) )/s)+((e^(−st) (scos2t−2sin2t))/(s^2 +4)))∣_0 ^m   L(sin^2 t)=0.5lim_(m→∞) (e^(−sm) (((scos2m−2sin2m)/(s^2 +4))−(1/s))+(1/s)−(s/(s^2 +4)))  L(sin^2 t)=0.5(((s^2 +4−s^2 )/(s(s^2 +4))))  L(sin^2 t)=(2/(s(s^2 +4)))
e(a+bi)x=eaxebix=eax(cosbx+isinbx)Ree(a+bi)xdx=eaxcosbxdxeaxcosbxdx=Re(1a+bie(a+bi)x)+Ceaxcosbxdx=Re((abi)e(a+bi)xa2+b2)+Ceaxcosbxdx=eax(acosbx+bsinbx)a2+b2+CLeta=sandb=2.esxcos2xdx=esx(2sin2xscos2x)s2+4+CL(sin2t)=12limm(ests+est(scos2t2sin2t)s2+4)0mL(sin2t)=0.5limm(esm(scos2m2sin2ms2+41s)+1sss2+4)L(sin2t)=0.5(s2+4s2s(s2+4))L(sin2t)=2s(s2+4)

Leave a Reply

Your email address will not be published. Required fields are marked *