Menu Close

Lesson1-AM-GM-s-inequality-Cauchy-form-a-1-a-2-a-n-n-a-1-a-2-a-n-1-n-where-a-1-a-2-a-n-gt-0-Equal-at-a-1-a-2-a-n-e-g-1-Given-a-b-c-gt-0-prove-that-




Question Number 11862 by Mr Chheang Chantria last updated on 03/Apr/17
Lesson1. AM−GM ′ s inequality (Cauchy)  form : ((a_1 +a_2 +...+a_n )/n) ≥ ((a_1 a_2 ...a_n ))^(1/n)   where a_1 ,a_2 ,....,a_n >0  Equal at a_1 =a_2 =.....=a_n   e.g. 1. Given a,b,c>0, prove that         (a+b)(b+c)(c+a)≥8abc  Solu. by AM−GM          a+b ≥ 2(√(ab))       (1)          b+c ≥ 2(√(bc))        (2)          c+a ≥ 2(√(ca))       (3)   (1)×(2)×(3) ⇒ (a+b)(b+c)(c+a)≥8(√(a^2 b^2 c^2 ))=8abc  Now practice.   . Given a,b,c>0 prove that       1. a^2 +b^2 +c^2 ≥ab+bc+ca       2. (a+(1/b))(b+(1/c))(c+(1/a))≥8       3. 4(a^3 +b^3 )≥(a+b)^3        4.  9(a^3 +b^3 +c^3 )≥(a+b+c)^3   let′s try, I will post my solution for which one  that you can′t do ;)
Lesson1.AMGMsinequality(Cauchy)form:a1+a2++anna1a2annwherea1,a2,.,an>0Equalata1=a2=..=ane.g.1.Givena,b,c>0,provethat(a+b)(b+c)(c+a)8abcSolu.byAMGMa+b2ab(1)b+c2bc(2)c+a2ca(3)(1)×(2)×(3)(a+b)(b+c)(c+a)8a2b2c2=8abcNowpractice..Givena,b,c>0provethat1.a2+b2+c2ab+bc+ca2.(a+1b)(b+1c)(c+1a)83.4(a3+b3)(a+b)34.9(a3+b3+c3)(a+b+c)3letstry,Iwillpostmysolutionforwhichonethatyoucantdo;)
Answered by Joel576 last updated on 03/Apr/17
(1)  a + b ≥ 2(√(ab ))  ⇔   a^2  + b^2  ≥ 2ab  ... (i)  b + c ≥ 2(√(bc))    ⇔   b^2  + c^2  ≥ 2bc   ... (ii)  a + c ≥ 2(√(ac))   ⇔   a^2  + c^2  ≥ 2ac  ... (iii)    (i) + (ii) + (iii)  2(a^2  + b^2  + c^2 ) ≥ 2(ab + bc + ac)  ⇒ a^2  + b^2  + c^2  ≥ ab + bc + ac
(1)a+b2aba2+b22ab(i)b+c2bcb2+c22bc(ii)a+c2aca2+c22ac(iii)(i)+(ii)+(iii)2(a2+b2+c2)2(ab+bc+ac)a2+b2+c2ab+bc+ac
Answered by Joel576 last updated on 03/Apr/17
(2)  (a + (1/b)) ≥ 2(√(a/b))   ... (i)  (b + (1/c)) ≥ 2(√(b/c))   ... (ii)  (c + (1/a)) ≥ 2(√(c/a))   ... (iii)    (i) . (ii) . (iii)  (a + (1/b))(b + (1/c))(c + (1/a)) ≥ 8(√1)
(2)(a+1b)2ab(i)(b+1c)2bc(ii)(c+1a)2ca(iii)(i).(ii).(iii)(a+1b)(b+1c)(c+1a)81
Commented by Mr Chheang Chantria last updated on 03/Apr/17
Very nice solution
\boldsymbolVery\boldsymbolnice\boldsymbolsolutionVerynicesolution

Leave a Reply

Your email address will not be published. Required fields are marked *