Menu Close

Lesson1-AM-GM-s-inequality-Cauchy-form-a-1-a-2-a-n-n-a-1-a-2-a-n-1-n-where-a-1-a-2-a-n-gt-0-Equal-at-a-1-a-2-a-n-e-g-1-Given-a-b-c-gt-0-prove-that-




Question Number 11862 by Mr Chheang Chantria last updated on 03/Apr/17
Lesson1. AM−GM ′ s inequality (Cauchy)  form : ((a_1 +a_2 +...+a_n )/n) ≥ ((a_1 a_2 ...a_n ))^(1/n)   where a_1 ,a_2 ,....,a_n >0  Equal at a_1 =a_2 =.....=a_n   e.g. 1. Given a,b,c>0, prove that         (a+b)(b+c)(c+a)≥8abc  Solu. by AM−GM          a+b ≥ 2(√(ab))       (1)          b+c ≥ 2(√(bc))        (2)          c+a ≥ 2(√(ca))       (3)   (1)×(2)×(3) ⇒ (a+b)(b+c)(c+a)≥8(√(a^2 b^2 c^2 ))=8abc  Now practice.   . Given a,b,c>0 prove that       1. a^2 +b^2 +c^2 ≥ab+bc+ca       2. (a+(1/b))(b+(1/c))(c+(1/a))≥8       3. 4(a^3 +b^3 )≥(a+b)^3        4.  9(a^3 +b^3 +c^3 )≥(a+b+c)^3   let′s try, I will post my solution for which one  that you can′t do ;)
$$\boldsymbol{{Lesson}}\mathrm{1}.\:\boldsymbol{\mathrm{AM}}−\boldsymbol{\mathrm{GM}}\:'\:\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{inequality}}\:\left(\boldsymbol{\mathrm{Cauchy}}\right) \\ $$$$\boldsymbol{\mathrm{form}}\::\:\frac{\boldsymbol{{a}}_{\mathrm{1}} +\boldsymbol{{a}}_{\mathrm{2}} +…+\boldsymbol{{a}}_{\boldsymbol{{n}}} }{\boldsymbol{{n}}}\:\geqslant\:\sqrt[{\boldsymbol{{n}}}]{\boldsymbol{{a}}_{\mathrm{1}} \boldsymbol{{a}}_{\mathrm{2}} …\boldsymbol{{a}}_{\boldsymbol{{n}}} } \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{a}}_{\mathrm{1}} ,\boldsymbol{{a}}_{\mathrm{2}} ,….,\boldsymbol{{a}}_{\boldsymbol{{n}}} >\mathrm{0} \\ $$$$\boldsymbol{{E}\mathrm{qual}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{a}}_{\mathrm{1}} =\boldsymbol{{a}}_{\mathrm{2}} =…..=\boldsymbol{{a}}_{\boldsymbol{{n}}} \\ $$$$\boldsymbol{{e}}.\boldsymbol{{g}}.\:\mathrm{1}.\:{Given}\:{a},{b},{c}>\mathrm{0},\:{prove}\:{that}\: \\ $$$$\:\:\:\:\:\:\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)\geqslant\mathrm{8}{abc} \\ $$$$\boldsymbol{{Solu}}.\:{by}\:{AM}−{GM} \\ $$$$\:\:\:\:\:\:\:\:{a}+{b}\:\geqslant\:\mathrm{2}\sqrt{{ab}}\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:{b}+{c}\:\geqslant\:\mathrm{2}\sqrt{{bc}}\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:{c}+{a}\:\geqslant\:\mathrm{2}\sqrt{{ca}}\:\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\:\left(\mathrm{1}\right)×\left(\mathrm{2}\right)×\left(\mathrm{3}\right)\:\Rightarrow\:\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)\geqslant\mathrm{8}\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }=\mathrm{8}{abc} \\ $$$$\boldsymbol{{Now}}\:\boldsymbol{{practice}}. \\ $$$$\:.\:{Given}\:{a},{b},{c}>\mathrm{0}\:{prove}\:{that} \\ $$$$\:\:\:\:\:\mathrm{1}.\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \geqslant{ab}+{bc}+{ca} \\ $$$$\:\:\:\:\:\mathrm{2}.\:\left({a}+\frac{\mathrm{1}}{{b}}\right)\left({b}+\frac{\mathrm{1}}{{c}}\right)\left({c}+\frac{\mathrm{1}}{{a}}\right)\geqslant\mathrm{8} \\ $$$$\:\:\:\:\:\mathrm{3}.\:\mathrm{4}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)\geqslant\left({a}+{b}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\mathrm{4}.\:\:\mathrm{9}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)\geqslant\left({a}+{b}+{c}\right)^{\mathrm{3}} \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{try},\:\mathrm{I}\:\mathrm{will}\:\mathrm{post}\:\mathrm{my}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{which}\:\mathrm{one} \\ $$$$\left.\mathrm{that}\:\mathrm{you}\:\mathrm{can}'\mathrm{t}\:\mathrm{do}\:;\right) \\ $$
Answered by Joel576 last updated on 03/Apr/17
(1)  a + b ≥ 2(√(ab ))  ⇔   a^2  + b^2  ≥ 2ab  ... (i)  b + c ≥ 2(√(bc))    ⇔   b^2  + c^2  ≥ 2bc   ... (ii)  a + c ≥ 2(√(ac))   ⇔   a^2  + c^2  ≥ 2ac  ... (iii)    (i) + (ii) + (iii)  2(a^2  + b^2  + c^2 ) ≥ 2(ab + bc + ac)  ⇒ a^2  + b^2  + c^2  ≥ ab + bc + ac
$$\left(\mathrm{1}\right) \\ $$$${a}\:+\:{b}\:\geqslant\:\mathrm{2}\sqrt{{ab}\:}\:\:\Leftrightarrow\:\:\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:\geqslant\:\mathrm{2}{ab}\:\:…\:\left({i}\right) \\ $$$${b}\:+\:{c}\:\geqslant\:\mathrm{2}\sqrt{{bc}}\:\:\:\:\Leftrightarrow\:\:\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:\geqslant\:\mathrm{2}{bc}\:\:\:…\:\left({ii}\right) \\ $$$${a}\:+\:{c}\:\geqslant\:\mathrm{2}\sqrt{{ac}}\:\:\:\Leftrightarrow\:\:\:{a}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:\geqslant\:\mathrm{2}{ac}\:\:…\:\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right)\:+\:\left({ii}\right)\:+\:\left({iii}\right) \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \right)\:\geqslant\:\mathrm{2}\left({ab}\:+\:{bc}\:+\:{ac}\right) \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:\geqslant\:{ab}\:+\:{bc}\:+\:{ac} \\ $$
Answered by Joel576 last updated on 03/Apr/17
(2)  (a + (1/b)) ≥ 2(√(a/b))   ... (i)  (b + (1/c)) ≥ 2(√(b/c))   ... (ii)  (c + (1/a)) ≥ 2(√(c/a))   ... (iii)    (i) . (ii) . (iii)  (a + (1/b))(b + (1/c))(c + (1/a)) ≥ 8(√1)
$$\left(\mathrm{2}\right) \\ $$$$\left({a}\:+\:\frac{\mathrm{1}}{{b}}\right)\:\geqslant\:\mathrm{2}\sqrt{\frac{{a}}{{b}}}\:\:\:…\:\left({i}\right) \\ $$$$\left({b}\:+\:\frac{\mathrm{1}}{{c}}\right)\:\geqslant\:\mathrm{2}\sqrt{\frac{{b}}{{c}}}\:\:\:…\:\left({ii}\right) \\ $$$$\left({c}\:+\:\frac{\mathrm{1}}{{a}}\right)\:\geqslant\:\mathrm{2}\sqrt{\frac{{c}}{{a}}}\:\:\:…\:\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right)\:.\:\left({ii}\right)\:.\:\left({iii}\right) \\ $$$$\left({a}\:+\:\frac{\mathrm{1}}{{b}}\right)\left({b}\:+\:\frac{\mathrm{1}}{{c}}\right)\left({c}\:+\:\frac{\mathrm{1}}{{a}}\right)\:\geqslant\:\mathrm{8}\sqrt{\mathrm{1}} \\ $$
Commented by Mr Chheang Chantria last updated on 03/Apr/17
Very nice solution
$$\boldsymbol{{Very}}\:\boldsymbol{{nice}}\:\boldsymbol{{solution}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *