Question Number 11862 by Mr Chheang Chantria last updated on 03/Apr/17
$$\boldsymbol{{Lesson}}\mathrm{1}.\:\boldsymbol{\mathrm{AM}}−\boldsymbol{\mathrm{GM}}\:'\:\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{inequality}}\:\left(\boldsymbol{\mathrm{Cauchy}}\right) \\ $$$$\boldsymbol{\mathrm{form}}\::\:\frac{\boldsymbol{{a}}_{\mathrm{1}} +\boldsymbol{{a}}_{\mathrm{2}} +…+\boldsymbol{{a}}_{\boldsymbol{{n}}} }{\boldsymbol{{n}}}\:\geqslant\:\sqrt[{\boldsymbol{{n}}}]{\boldsymbol{{a}}_{\mathrm{1}} \boldsymbol{{a}}_{\mathrm{2}} …\boldsymbol{{a}}_{\boldsymbol{{n}}} } \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{a}}_{\mathrm{1}} ,\boldsymbol{{a}}_{\mathrm{2}} ,….,\boldsymbol{{a}}_{\boldsymbol{{n}}} >\mathrm{0} \\ $$$$\boldsymbol{{E}\mathrm{qual}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{a}}_{\mathrm{1}} =\boldsymbol{{a}}_{\mathrm{2}} =…..=\boldsymbol{{a}}_{\boldsymbol{{n}}} \\ $$$$\boldsymbol{{e}}.\boldsymbol{{g}}.\:\mathrm{1}.\:{Given}\:{a},{b},{c}>\mathrm{0},\:{prove}\:{that}\: \\ $$$$\:\:\:\:\:\:\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)\geqslant\mathrm{8}{abc} \\ $$$$\boldsymbol{{Solu}}.\:{by}\:{AM}−{GM} \\ $$$$\:\:\:\:\:\:\:\:{a}+{b}\:\geqslant\:\mathrm{2}\sqrt{{ab}}\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:{b}+{c}\:\geqslant\:\mathrm{2}\sqrt{{bc}}\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:{c}+{a}\:\geqslant\:\mathrm{2}\sqrt{{ca}}\:\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\:\left(\mathrm{1}\right)×\left(\mathrm{2}\right)×\left(\mathrm{3}\right)\:\Rightarrow\:\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)\geqslant\mathrm{8}\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }=\mathrm{8}{abc} \\ $$$$\boldsymbol{{Now}}\:\boldsymbol{{practice}}. \\ $$$$\:.\:{Given}\:{a},{b},{c}>\mathrm{0}\:{prove}\:{that} \\ $$$$\:\:\:\:\:\mathrm{1}.\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \geqslant{ab}+{bc}+{ca} \\ $$$$\:\:\:\:\:\mathrm{2}.\:\left({a}+\frac{\mathrm{1}}{{b}}\right)\left({b}+\frac{\mathrm{1}}{{c}}\right)\left({c}+\frac{\mathrm{1}}{{a}}\right)\geqslant\mathrm{8} \\ $$$$\:\:\:\:\:\mathrm{3}.\:\mathrm{4}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)\geqslant\left({a}+{b}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\mathrm{4}.\:\:\mathrm{9}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)\geqslant\left({a}+{b}+{c}\right)^{\mathrm{3}} \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{try},\:\mathrm{I}\:\mathrm{will}\:\mathrm{post}\:\mathrm{my}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{which}\:\mathrm{one} \\ $$$$\left.\mathrm{that}\:\mathrm{you}\:\mathrm{can}'\mathrm{t}\:\mathrm{do}\:;\right) \\ $$
Answered by Joel576 last updated on 03/Apr/17
$$\left(\mathrm{1}\right) \\ $$$${a}\:+\:{b}\:\geqslant\:\mathrm{2}\sqrt{{ab}\:}\:\:\Leftrightarrow\:\:\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:\geqslant\:\mathrm{2}{ab}\:\:…\:\left({i}\right) \\ $$$${b}\:+\:{c}\:\geqslant\:\mathrm{2}\sqrt{{bc}}\:\:\:\:\Leftrightarrow\:\:\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:\geqslant\:\mathrm{2}{bc}\:\:\:…\:\left({ii}\right) \\ $$$${a}\:+\:{c}\:\geqslant\:\mathrm{2}\sqrt{{ac}}\:\:\:\Leftrightarrow\:\:\:{a}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:\geqslant\:\mathrm{2}{ac}\:\:…\:\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right)\:+\:\left({ii}\right)\:+\:\left({iii}\right) \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \right)\:\geqslant\:\mathrm{2}\left({ab}\:+\:{bc}\:+\:{ac}\right) \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:\geqslant\:{ab}\:+\:{bc}\:+\:{ac} \\ $$
Answered by Joel576 last updated on 03/Apr/17
$$\left(\mathrm{2}\right) \\ $$$$\left({a}\:+\:\frac{\mathrm{1}}{{b}}\right)\:\geqslant\:\mathrm{2}\sqrt{\frac{{a}}{{b}}}\:\:\:…\:\left({i}\right) \\ $$$$\left({b}\:+\:\frac{\mathrm{1}}{{c}}\right)\:\geqslant\:\mathrm{2}\sqrt{\frac{{b}}{{c}}}\:\:\:…\:\left({ii}\right) \\ $$$$\left({c}\:+\:\frac{\mathrm{1}}{{a}}\right)\:\geqslant\:\mathrm{2}\sqrt{\frac{{c}}{{a}}}\:\:\:…\:\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right)\:.\:\left({ii}\right)\:.\:\left({iii}\right) \\ $$$$\left({a}\:+\:\frac{\mathrm{1}}{{b}}\right)\left({b}\:+\:\frac{\mathrm{1}}{{c}}\right)\left({c}\:+\:\frac{\mathrm{1}}{{a}}\right)\:\geqslant\:\mathrm{8}\sqrt{\mathrm{1}} \\ $$
Commented by Mr Chheang Chantria last updated on 03/Apr/17
$$\boldsymbol{{Very}}\:\boldsymbol{{nice}}\:\boldsymbol{{solution}} \\ $$