Menu Close

let-0-lt-a-lt-1-calculate-0-ln-t-t-a-1-1-t-dt-and-0-ln-2-t-t-a-1-1-t-dt-




Question Number 73238 by mathmax by abdo last updated on 08/Nov/19
let 0<a<1 calculate ∫_0 ^∞  ((ln(t)t^(a−1) )/(1+t))dt  and ∫_0 ^∞  ((ln^2 (t)t^(a−1) )/(1+t))dt
let0<a<1calculate0ln(t)ta11+tdtand0ln2(t)ta11+tdt
Commented by mathmax by abdo last updated on 10/Nov/19
we have ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa)))=f(a) if 0<a<1   (this result is proved in  the plstform) ⇒ f^′ (a) =∫_0 ^∞  (∂/∂a)((t^(a−1) /(1+t)))dt =∫_0 ^∞  (∂/∂a)((e^((a−1)lnt) /(1+t)))dt  =∫_0 ^∞ ((lnt ×t^(a−1) )/(1+t))  but  f^′ (a)=π×((−π cos(πa))/(sin^2 (πa))) =−π^2  ((cos(πa))/(sin^2 (πa)))  also f^((2)) (a) =∫_0 ^∞  ((ln^2 (t)t^(a−1) )/(1+t))dt  and f^((2)) (a)=  −π^2 ((−πsin(πa)sin^2 (πa)−2sin(πa)π cos(πa))/(sin^4 (πa)))  =π^3 ×((sin^2 (πa)+2cos(πa))/(sin^3 (πa))) ⇒∫_0 ^∞   ((ln(t)t^(a−1) )/(1+t))dt=−((π^2 cos(πa))/(sin^2 (πa)))  and ∫_0 ^∞  ((ln^2 t t^(a−1) )/(1+t))dt =π^3 ×((sin^2 (πa)+2cos(πa))/(sin^3 (πa))) .
wehave0ta11+tdt=πsin(πa)=f(a)if0<a<1(thisresultisprovedintheplstform)f(a)=0a(ta11+t)dt=0a(e(a1)lnt1+t)dt=0lnt×ta11+tbutf(a)=π×πcos(πa)sin2(πa)=π2cos(πa)sin2(πa)alsof(2)(a)=0ln2(t)ta11+tdtandf(2)(a)=π2πsin(πa)sin2(πa)2sin(πa)πcos(πa)sin4(πa)=π3×sin2(πa)+2cos(πa)sin3(πa)0ln(t)ta11+tdt=π2cos(πa)sin2(πa)and0ln2tta11+tdt=π3×sin2(πa)+2cos(πa)sin3(πa).
Answered by mind is power last updated on 09/Nov/19
Commented by mathmax by abdo last updated on 10/Nov/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 10/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *