Question Number 73238 by mathmax by abdo last updated on 08/Nov/19
$${let}\:\mathrm{0}<{a}<\mathrm{1}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$
Commented by mathmax by abdo last updated on 10/Nov/19
$${we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)}={f}\left({a}\right)\:{if}\:\mathrm{0}<{a}<\mathrm{1}\:\:\:\left({this}\:{result}\:{is}\:{proved}\:{in}\right. \\ $$$$\left.{the}\:{plstform}\right)\:\Rightarrow\:{f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\partial}{\partial{a}}\left(\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\right){dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\partial}{\partial{a}}\left(\frac{{e}^{\left({a}−\mathrm{1}\right){lnt}} }{\mathrm{1}+{t}}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{lnt}\:×{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\:\:{but}\:\:{f}^{'} \left({a}\right)=\pi×\frac{−\pi\:{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)}\:=−\pi^{\mathrm{2}} \:\frac{{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)} \\ $$$${also}\:{f}^{\left(\mathrm{2}\right)} \left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:{f}^{\left(\mathrm{2}\right)} \left({a}\right)= \\ $$$$−\pi^{\mathrm{2}} \frac{−\pi{sin}\left(\pi{a}\right){sin}^{\mathrm{2}} \left(\pi{a}\right)−\mathrm{2}{sin}\left(\pi{a}\right)\pi\:{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{4}} \left(\pi{a}\right)} \\ $$$$=\pi^{\mathrm{3}} ×\frac{{sin}^{\mathrm{2}} \left(\pi{a}\right)+\mathrm{2}{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{3}} \left(\pi{a}\right)}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}=−\frac{\pi^{\mathrm{2}} {cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)} \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} {t}\:{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\pi^{\mathrm{3}} ×\frac{{sin}^{\mathrm{2}} \left(\pi{a}\right)+\mathrm{2}{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{3}} \left(\pi{a}\right)}\:. \\ $$$$ \\ $$
Answered by mind is power last updated on 09/Nov/19
Commented by mathmax by abdo last updated on 10/Nov/19
$${thank}\:{you}\:{sir}. \\ $$
Commented by mind is power last updated on 10/Nov/19
$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$