Menu Close

Let-1-and-13-1-If-a-3-4-4-3-1-and-b-2-5-6-6-5-2-then-the-quadratic-equation-whose-roots-are-a-and-b-is-A-x-2-x-3-0-




Question Number 140981 by EnterUsername last updated on 14/May/21
Let α≠1 and α^(13) =1. If a=α+α^3 +α^4 +α^(−4) +α^(−3) +  α^(−1)  and b=α^2 +α^5 +α^6 +α^(−6) +α^(−5) +α^(−2)  then the  quadratic equation whose roots are a and b is  (A) x^2 +x+3=0                             (B) x^2 +x+4=0  (C) x^2 +x−3=0                             (D) x^2 +x−4=0
Letα1andα13=1.Ifa=α+α3+α4+α4+α3+α1andb=α2+α5+α6+α6+α5+α2thenthequadraticequationwhoserootsareaandbis(A)x2+x+3=0(B)x2+x+4=0(C)x2+x3=0(D)x2+x4=0
Answered by Rasheed.Sindhi last updated on 16/May/21
FORMULAE:  For nth roots  α^(k+n) =α^k   1+α+α^2 +α^3 +...+α^n =0  (Sum of all the nth roots is zero)  α+α^2 +α^3 +...+α^n =−1  For 13th roots      α^(k+13) =α^k   1+α+α^2 +α^3 +...+α^(12) =0  (Sum of all the 13th roots is zero)  α+α^2 +α^3 +...+α^(12) =−1  ⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌣⌢⌣⌢  a=α+α^3 +α^4 +α^(−4) +α^(−3) +α^(−1)      =α+α^3 +α^4 +α^9 +α^(10) +α^(12)   b=α^2 +α^5 +α^6 +α^(−6) +α^(−5) +α^(−2)      =α^2 +α^5 +α^6 +α^7 +α^8 +α^(11)   a+b=α+α^2 +α^3 +...+α^(12) =−1  ab=(α+α^3 +α^4 +α^9 +α^(10) +α^(12) )                      ×(α^2 +α^5 +α^6 +α^7 +α^8 +α^(11) )      =α^3 +α^6 +α^7 +α^8 +α^9 +α^(12)          +α^5 +α^8 +α^9 +α^(10) +α^(11) +α^1          +α^6 +α^9 +α^(10) +α^(11) +α^(12) +α^2          +α^(11) +α^1 +α^2 +α^3 +α^4 +α^7          +α^(12) +α^2 +α^3 +α^4 +α^5 +α^8          +α^1 +α^4 +α^5 +α^6 +α^7 +α^(10)     =(α^1 +α^2 +α^3 +...+α^(12) )              +(α^1 +α^2 +α^3 +...+α^(12) )                     +(α^1 +α^2 +α^3 +...+α^(12) )   =(−1)+(−1)+(−1)=−3  Equation required:       x^2 −(a+b)x+ab      x^2 −(−1)x+(−3)      x^2 +x−3  So (C) is correct
FORMULAE:Fornthrootsαk+n=αk1+α+α2+α3++αn=0(Sumofallthenthrootsiszero)α+α2+α3++αn=1For13throotsαk+13=αk1+α+α2+α3++α12=0(Sumofallthe13throotsiszero)α+α2+α3++α12=1⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌣⌢⌣⌢a=α+α3+α4+α4+α3+α1=α+α3+α4+α9+α10+α12b=α2+α5+α6+α6+α5+α2=α2+α5+α6+α7+α8+α11a+b=α+α2+α3++α12=1ab=(α+α3+α4+α9+α10+α12)×(α2+α5+α6+α7+α8+α11)=α3+α6+α7+α8+α9+α12+α5+α8+α9+α10+α11+α1+α6+α9+α10+α11+α12+α2+α11+α1+α2+α3+α4+α7+α12+α2+α3+α4+α5+α8+α1+α4+α5+α6+α7+α10=(α1+α2+α3++α12)+(α1+α2+α3++α12)+(α1+α2+α3++α12)=(1)+(1)+(1)=3Equationrequired:x2(a+b)x+abx2(1)x+(3)x2+x3So(C)iscorrect
Commented by EnterUsername last updated on 19/May/21
Thank you Sir
ThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *