Question Number 140981 by EnterUsername last updated on 14/May/21
$$\mathrm{Let}\:\alpha\neq\mathrm{1}\:\mathrm{and}\:\alpha^{\mathrm{13}} =\mathrm{1}.\:\mathrm{If}\:{a}=\alpha+\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{−\mathrm{4}} +\alpha^{−\mathrm{3}} + \\ $$$$\alpha^{−\mathrm{1}} \:\mathrm{and}\:{b}=\alpha^{\mathrm{2}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{6}} +\alpha^{−\mathrm{6}} +\alpha^{−\mathrm{5}} +\alpha^{−\mathrm{2}} \:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{whose}\:\mathrm{roots}\:\mathrm{are}\:{a}\:\mathrm{and}\:{b}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{3}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{4}=\mathrm{0} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{3}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{4}=\mathrm{0} \\ $$
Answered by Rasheed.Sindhi last updated on 16/May/21
$${FORMULAE}: \\ $$$$\mathcal{F}{or}\:{nth}\:{roots} \\ $$$$\alpha^{{k}+{n}} =\alpha^{{k}} \\ $$$$\mathrm{1}+\alpha+\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{{n}} =\mathrm{0} \\ $$$$\left({Sum}\:{of}\:{all}\:{the}\:{nth}\:{roots}\:{is}\:{zero}\right) \\ $$$$\alpha+\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{{n}} =−\mathrm{1} \\ $$$$\mathcal{F}{or}\:\mathrm{13}{th}\:{roots} \\ $$$$\:\:\:\:\alpha^{{k}+\mathrm{13}} =\alpha^{{k}} \\ $$$$\mathrm{1}+\alpha+\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{\mathrm{12}} =\mathrm{0} \\ $$$$\left({Sum}\:{of}\:{all}\:{the}\:\mathrm{13}{th}\:{roots}\:{is}\:{zero}\right) \\ $$$$\alpha+\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{\mathrm{12}} =−\mathrm{1} \\ $$$$\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile\smile\frown\smile\frown \\ $$$${a}=\alpha+\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{−\mathrm{4}} +\alpha^{−\mathrm{3}} +\alpha^{−\mathrm{1}} \\ $$$$\:\:\:=\alpha+\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{9}} +\alpha^{\mathrm{10}} +\alpha^{\mathrm{12}} \\ $$$${b}=\alpha^{\mathrm{2}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{6}} +\alpha^{−\mathrm{6}} +\alpha^{−\mathrm{5}} +\alpha^{−\mathrm{2}} \\ $$$$\:\:\:=\alpha^{\mathrm{2}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{6}} +\alpha^{\mathrm{7}} +\alpha^{\mathrm{8}} +\alpha^{\mathrm{11}} \\ $$$${a}+{b}=\alpha+\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{\mathrm{12}} =−\mathrm{1} \\ $$$${ab}=\left(\alpha+\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{9}} +\alpha^{\mathrm{10}} +\alpha^{\mathrm{12}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\left(\alpha^{\mathrm{2}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{6}} +\alpha^{\mathrm{7}} +\alpha^{\mathrm{8}} +\alpha^{\mathrm{11}} \right) \\ $$$$\:\:\:\:=\alpha^{\mathrm{3}} +\alpha^{\mathrm{6}} +\alpha^{\mathrm{7}} +\alpha^{\mathrm{8}} +\alpha^{\mathrm{9}} +\alpha^{\mathrm{12}} \\ $$$$\:\:\:\:\:\:\:+\alpha^{\mathrm{5}} +\alpha^{\mathrm{8}} +\alpha^{\mathrm{9}} +\alpha^{\mathrm{10}} +\alpha^{\mathrm{11}} +\alpha^{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:+\alpha^{\mathrm{6}} +\alpha^{\mathrm{9}} +\alpha^{\mathrm{10}} +\alpha^{\mathrm{11}} +\alpha^{\mathrm{12}} +\alpha^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:+\alpha^{\mathrm{11}} +\alpha^{\mathrm{1}} +\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{7}} \\ $$$$\:\:\:\:\:\:\:+\alpha^{\mathrm{12}} +\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:+\alpha^{\mathrm{1}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{6}} +\alpha^{\mathrm{7}} +\alpha^{\mathrm{10}} \\ $$$$\:\:=\left(\alpha^{\mathrm{1}} +\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{\mathrm{12}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\left(\alpha^{\mathrm{1}} +\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{\mathrm{12}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(\alpha^{\mathrm{1}} +\alpha^{\mathrm{2}} +\alpha^{\mathrm{3}} +…+\alpha^{\mathrm{12}} \right) \\ $$$$\:=\left(−\mathrm{1}\right)+\left(−\mathrm{1}\right)+\left(−\mathrm{1}\right)=−\mathrm{3} \\ $$$$\mathcal{E}{quation}\:{required}: \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab} \\ $$$$\:\:\:\:{x}^{\mathrm{2}} −\left(−\mathrm{1}\right){x}+\left(−\mathrm{3}\right) \\ $$$$\:\:\:\:{x}^{\mathrm{2}} +{x}−\mathrm{3} \\ $$$${So}\:\left({C}\right)\:{is}\:{correct} \\ $$
Commented by EnterUsername last updated on 19/May/21
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$