Menu Close

let-A-0-dx-x-2-3-x-4-e-i-with-0-lt-lt-pi-2-1-calculate-A-interms-of-2-determine-also-0-dx-x-2-3-x-4-e-i-2-




Question Number 67932 by mathmax by abdo last updated on 02/Sep/19
let A(θ) = ∫_0 ^∞     (dx/((x^2 +3)(x^4 −e^(iθ) )))  with  0<θ<(π/2)  1) calculate A(θ) interms of θ  2) determine also ∫_0 ^∞    (dx/((x^2 +3)(x^4 −e^(iθ) )^2 ))
letA(θ)=0dx(x2+3)(x4eiθ)with0<θ<π21)calculateA(θ)intermsofθ2)determinealso0dx(x2+3)(x4eiθ)2
Commented by MJS last updated on 02/Sep/19
I get (1)  A(θ)=−((π(2(√3)e^(i((3θ)/4)) −3e^(i(θ/2)) −9))/(12e^(i((3θ)/4)) (e^(iθ) −9)))  can this be right?
Iget(1)A(θ)=π(23ei3θ43eiθ29)12ei3θ4(eiθ9)canthisberight?
Commented by mathmax by abdo last updated on 02/Sep/19
1) A(θ)=∫_0 ^∞   (dx/((x^2  +3)(x^4 −e^(iθ) ))) ⇒2A(θ)=∫_(−∞) ^(+∞)  (dx/((x^2  +3)(x^4 −e^(iθ) )))  let W(z) =(1/((z^2 +3)(z^4 −e^(iθ) )))  poles of W?  z^4 −e^(iθ)  =0 ⇒z^4 =e^(iθ)      let z =r e^(iα)  ⇒r=1 and 4α =θ +2kπ ⇒  α_k =((θ+2kπ)/4)  ⇒ the roots are Z_k =e^(i((θ+2kπ)/4))   and k∈[[0,3]]  Z_0 =e^((iθ)/4)     ,Z_1 =e^(i(((θ+2π)/4))) =e^(((iθ)/4)+((iπ)/2))   , Z_2 =e^(i(((θ+4π)/4))) =e^(((iθ)/4)+iπ)   Z_3   = e^(i(((θ+6π)/4)))  =e^(((iθ)/4)+i((3π)/2)) =e^(((iθ)/4)+i(2π−(π/2))) =e^(i((θ/4)−(π/2)))   Z_1 =i e^((iπ)/4)  =i{cos((π/4))+isin((π/4))}=−sin(π/4)+icos((π/4))⇒im(z_1 )>0  im(Z_0 )>0  im(Z_2 )<0  im(z_3 )<0  z^2 +3 =z^2 −(i(√3))^2  =(z−i(√3))(z+i(√3)) so the roots are +^− i(√3)  residu theorem ⇒ ∫_(−∞) ^(+∞)  W(z)dz =2iπ{Res(W,i(√3))  +Res(W,Z_0 )+Res(W,Z_1 )} we have  W(z) =(1/((z−i(√3))(z+i(√3))(z−Z_0 )(z−Z_1 )(z−Z_2 )(z−Z_3 ))) ⇒  Res(W,i(√3)) =(1/((2i(√3))((i(√3))^4 −e^(iθ) ))) =(1/((2i(√3))(9−e^(iθ) )))  Res(W,Z_0 ) =(1/((Z_0 ^2 +3)(Z_0 −Z_1 )(Z_0 −Z_2 )(Z_0 −Z_3 )))  Res(W,Z_1 ) =(1/((Z_1 ^2  +3)(Z_1 −Z_0 )(Z_1 −Z_2 )(Z_1 −Z_3 )))  rest to finich the calculus ....
1)A(θ)=0dx(x2+3)(x4eiθ)2A(θ)=+dx(x2+3)(x4eiθ)letW(z)=1(z2+3)(z4eiθ)polesofW?z4eiθ=0z4=eiθletz=reiαr=1and4α=θ+2kπαk=θ+2kπ4therootsareZk=eiθ+2kπ4andk[[0,3]]Z0=eiθ4,Z1=ei(θ+2π4)=eiθ4+iπ2,Z2=ei(θ+4π4)=eiθ4+iπZ3=ei(θ+6π4)=eiθ4+i3π2=eiθ4+i(2ππ2)=ei(θ4π2)Z1=ieiπ4=i{cos(π4)+isin(π4)}=sinπ4+icos(π4)im(z1)>0im(Z0)>0im(Z2)<0im(z3)<0z2+3=z2(i3)2=(zi3)(z+i3)sotherootsare+i3residutheorem+W(z)dz=2iπ{Res(W,i3)+Res(W,Z0)+Res(W,Z1)}wehaveW(z)=1(zi3)(z+i3)(zZ0)(zZ1)(zZ2)(zZ3)Res(W,i3)=1(2i3)((i3)4eiθ)=1(2i3)(9eiθ)Res(W,Z0)=1(Z02+3)(Z0Z1)(Z0Z2)(Z0Z3)Res(W,Z1)=1(Z12+3)(Z1Z0)(Z1Z2)(Z1Z3)resttofinichthecalculus.
Commented by mathmax by abdo last updated on 02/Sep/19
perhaps because i dont complete the calculus..
perhapsbecauseidontcompletethecalculus..
Commented by mathmax by abdo last updated on 02/Sep/19
2) we have A^′ (θ) =∫_0 ^∞    (e^(iθ) /((x^2  +3)(x^4 −e^(iθ) )^2 ))dx ⇒  ∫_0 ^∞ (dx/((x^2  +3)(x^4 −e^(iθ) )^2 )) =e^(−iθ)  A^′ (θ)  rest to calculate  A^′ (θ).
2)wehaveA(θ)=0eiθ(x2+3)(x4eiθ)2dx0dx(x2+3)(x4eiθ)2=eiθA(θ)resttocalculateA(θ).
Answered by mind is power last updated on 02/Sep/19
let f(z)=(dz/((z^2 +3)(x^4 −e^(iθ) )))  pole of f are +_− i(√3)  ,e^(i((θ+2kπ)/4))     k≤4  we shose uper[half im(z)>0  plan and  use residus theorem  Res (f.i(√3))=(1/(2i(√3) (9−e^(iθ) )))  res (f,e^(iθ) )=(1/(4e^(i3θ) (e^(2iθ) +3)))  res (f,e^(i(θ+(π/2))) )=(1/(4e^(i(3θ+((3π)/2))) (−e^(i2θ) +3)))  ∫_0 ^(+∞) (dz/((z^2 +3)(z^4 +e^(iθ) )))=(1/2)∫_(−∞) ^(+∞) f(z)dz=iπΣ_(res >0 ) f(z)  =iπ[(1/(2i(√3)(9−e^(iθ) )))+(1/(4e^(3iθ) (e^(2iθ) +3)))+(1/(−4ie^(3iθ) (3−e^(2iθ) )))]  =((iπ)/)[((−i(9−e^(−iθ) ))/(2(√3)(82−18cos(θ))))+((e^(−3iθ) (3+e^(−2iθ) ))/(4(10+6cos(2θ))))+((ie^(−i3θ) (3−e^(−2iθ) ))/(4(10−6cos(2θ)))) )  2) (df/dθ)=∫(e^(iθ) /((z^2 +3)(z^4 −e^(iθ) )^2 ))dz=e^(iθ) ∫(1/((z^2 +3)(z^4 −e^(iθ) )))dz  ⇒∫(dx/((x^2 +3)(x^4 −e^(iθ) )))=f′(θ)e^(−iθ)
letf(z)=dz(z2+3)(x4eiθ)poleoffare+i3,eiθ+2kπ4k4weshoseuper[halfim(z)>0plananduseresidustheoremRes(f.i3)=12i3(9eiθ)res(f,eiθ)=14ei3θ(e2iθ+3)res(f,ei(θ+π2))=14ei(3θ+3π2)(ei2θ+3)0+dz(z2+3)(z4+eiθ)=12+f(z)dz=iπres>0f(z)=iπ[12i3(9eiθ)+14e3iθ(e2iθ+3)+14ie3iθ(3e2iθ)]=iπ[i(9eiθ)23(8218cos(θ))+e3iθ(3+e2iθ)4(10+6cos(2θ))+iei3θ(3e2iθ)4(106cos(2θ)))2)dfdθ=eiθ(z2+3)(z4eiθ)2dz=eiθ1(z2+3)(z4eiθ)dzdx(x2+3)(x4eiθ)=f(θ)eiθ

Leave a Reply

Your email address will not be published. Required fields are marked *