Menu Close

let-A-1-1-1-1-1-calculate-A-n-2-find-e-A-e-A-3-find-sinA-and-cosA-4-find-ch-A-and-sh-A-




Question Number 76361 by mathmax by abdo last updated on 26/Dec/19
let A = (((1          1)),((1           1)) )  1) calculate A^n   2) find e^A   ,e^(−A)   3) find sinA and cosA  4) find ch(A) and sh(A)
letA=(1111)1)calculateAn2)findeA,eA3)findsinAandcosA4)findch(A)andsh(A)
Commented by mathmax by abdo last updated on 27/Dec/19
P_c (x) =det(A−xI) = determinant (((1−x       1)),((1           1−x)))=(1−x)^2 −1  =(1−x−1)(1−x+1) =−x(2−x) =x(x−2) so the proper values  are λ_1 =0  and λ_2 =2  let divide x^n  by P_c (x) ⇒  x^n =Q(x)P_c (x)+u_n x +v_n  ⇒0 =v_n   2^n  =2u_n  ⇒u_n =2^(n−1)    we have A^n =u_n  A =2^(n−1)  (((1         1)),((1          1)) )  ⇒ A^n  = (((2^(n−1)          2^(n−1) )),((2^(n−1)           2^(n−1) )) )  2) e^(A ) =Σ_(n=0) ^∞  (A^n /(n!)) = ((( Σ_(n=0) ^∞  (2^(n−1) /(n!))         Σ_(n=0) ^∞  (2^(n−1) /(n!)))),((Σ_(n=0) ^∞  (2^(n−1) /(n!))           Σ_(n=0) ^∞  (2^(n−1) /(n!)))) )  =(1/2) (((e^2         e^2 )),((e^2         e^2 )) )    e^(−A)  =Σ_(n=0) ^∞   (((−1)^n )/(n!)) A^n  = (((Σ_(n=0) ^∞  (((−1)^n )/(n!))2^(n−1)         ...)),((...                                         ...)) )  = ((((1/2)e^(−2)           (1/2)e^(−2) )),(((1/2)e^(−2)            (1/2)e^(−2) )) )
Pc(x)=det(AxI)=|1x111x|=(1x)21=(1x1)(1x+1)=x(2x)=x(x2)sothepropervaluesareλ1=0andλ2=2letdividexnbyPc(x)xn=Q(x)Pc(x)+unx+vn0=vn2n=2unun=2n1wehaveAn=unA=2n1(1111)An=(2n12n12n12n1)2)eA=n=0Ann!=(n=02n1n!n=02n1n!n=02n1n!n=02n1n!)=12(e2e2e2e2)eA=n=0(1)nn!An=(n=0(1)nn!2n1)=(12e212e212e212e2)
Commented by mathmax by abdo last updated on 27/Dec/19
3) sinA =Σ_(n=0) ^∞  (((−1)^n  A^(2n+1) )/((2n+1)!)) = (((Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))2^(2n+1−1)       ...)),((...                                            ...)) )  = ((((1/2)sin(2)         (1/2)sin(2))),(((1/2)sin(2)           (1/2)sin(2))) )  cosA =Σ_(n=0) ^∞  (((−1)^n )/((2n)!)) A^(2n)   = (((Σ_(n=0) ^∞  (((−1)^n )/((2n)!))2^(2n−1)       ...)),((...                                        ...)) )  = ((((1/2)cos(2)      (1/2)cos(2))),(((1/2)cos(2)       (1/2)cos(2))) )
3)sinA=n=0(1)nA2n+1(2n+1)!=(n=0(1)n(2n+1)!22n+11)=(12sin(2)12sin(2)12sin(2)12sin(2))cosA=n=0(1)n(2n)!A2n=(n=0(1)n(2n)!22n1)=(12cos(2)12cos(2)12cos(2)12cos(2))
Commented by mathmax by abdo last updated on 27/Dec/19
4) sh(A) =(1/2)(e^A  −e^(−A) )=....
4)sh(A)=12(eAeA)=.
Answered by john santu last updated on 27/Dec/19
A^n = (((2^(n−1)  2^(n−1) )),((2^(n−1)  2^(n−1) )) ) =2^(n−1)   (((1 1)),((1 1)) )
An=(2n12n12n12n1)=2n1(1111)

Leave a Reply

Your email address will not be published. Required fields are marked *