Menu Close

let-A-1-1-3-1-1-calculate-A-n-2-find-e-A-and-e-A-3-find-cosA-and-sinA-




Question Number 75735 by mathmax by abdo last updated on 16/Dec/19
let A = (((1           1)),((3          −1)) )  1) calculate A^n   2) find e^A  and e^(−A)   3) find cosA and sinA
letA=(1131)1)calculateAn2)findeAandeA3)findcosAandsinA
Commented by abdomathmax last updated on 22/Dec/19
cosA =Σ_(n=0) ^∞  (((−1)^n  A^(2n) )/((2n)!))  sinA =Σ_(n=0) ^∞  (((−1)^n )/((2n+1))) A^(2n+1)
cosA=n=0(1)nA2n(2n)!sinA=n=0(1)n(2n+1)A2n+1
Commented by mathmax by abdo last updated on 22/Dec/19
Pc(x) =det(A−xI) = determinant (((1−x      1)),((3                −1−x)))=−(1+x)(1−x)−3  =x^2 −1−3 =x^2 −4  the proper values are  λ_1 =2 and λ_2 =−2  we hsve  x^n  =P_c (x)Q(x) +u_n x +v_(n )   ⇒  2^n  =2u_n +v_n   and  (−2)^n  =−2u_n +v_n  ⇒   { ((2u_n  +v_n =2^n )),((−2u_n  +v_n =(−2)^n   ⇒4u_n =2^n −(−2)^n  ⇒ u_n =((2^n −(−2)^n )/4))) :}  v_n =2^n −2u_n =2^n −((2^n −(−2)^n  )/2)=((2.2^n −2^n  +(−2)^n )/2) =((2^n  +(−2)^n )/2)  also we have  A^n  = u_n  A +v_n  I   =((2^n −(−2)^n )/4)  (((1          1)),((3         −1)) )  +((2^n  +(−2)^n )/2)  (((1        0)),((0          1)) )  = (((((2^n −(−2)^n )/4)                ((2^n −(−2)^n )/4))),(((3/4)( 2^n −(−2)^n )        −((2^n −(−2)^n )/4))) )  +  (((((2^n  +(−2)^n )/2)        0)),((0                         ((2^n  +(−2)^n )/2))) )  = (((      ((2^n −(−2)^n  +2.2^n  +2.(−2)^n )/4)                 ((2^n −(−2)^n )/4))),(((3/4)(2^n −(−2)^n )                           ((−2^n  +(−2)^n  +2.2^n  +2.(−2)^n )/4))) )
Pc(x)=det(AxI)=|1x131x|=(1+x)(1x)3=x213=x24thepropervaluesareλ1=2andλ2=2wehsvexn=Pc(x)Q(x)+unx+vn2n=2un+vnand(2)n=2un+vn{2un+vn=2n2un+vn=(2)n4un=2n(2)nun=2n(2)n4vn=2n2un=2n2n(2)n2=2.2n2n+(2)n2=2n+(2)n2alsowehaveAn=unA+vnI=2n(2)n4(1131)+2n+(2)n2(1001)=(2n(2)n42n(2)n434(2n(2)n)2n(2)n4)+(2n+(2)n2002n+(2)n2)=(2n(2)n+2.2n+2.(2)n42n(2)n434(2n(2)n)2n+(2)n+2.2n+2.(2)n4)
Commented by mathmax by abdo last updated on 22/Dec/19
A^n  = (((((3.2^n  +(−2)^n )/4)                   ((2^n −(−2)^n )/4))),(((3/4)(2^n  −(−2)^n )               ((2^n  +3.(−2)^n )/4))) )
An=(3.2n+(2)n42n(2)n434(2n(2)n)2n+3.(2)n4)
Commented by mathmax by abdo last updated on 22/Dec/19
e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =Σ_(n=0) ^∞ (1/(n!)) (((((3.2^n  +(−2)^n )/4)              ((2^n −(−2)^n )/4))),(((3/4)(2^n −(−2)^n )       ((2^n  +3(−2)^n )/4))) )  = ((((3/4)Σ_(n=0) ^∞  (2^n /(n!)) +(1/4)Σ_(n=0) ^∞  (((−2)^n )/(n!))        (1/4)  Σ_(n=0) ^∞  (2^n /(n!))−(1/4)Σ_(n=0) ^∞  (((−2)^n )/(n!)))),(((3/4)Σ_(n=0) ^∞  (2^n /(n!))−(3/4)Σ_(n=0) ^∞ (((−2)^n )/(n!))           (1/4)Σ_(n=0) ^∞  (2^n /(n!))+(3/4)Σ_(n=0) ^∞  (((−2)^n )/(n!)))) )  = ((((3/4)e^2  +(1/4)e^(−2)             (1/4)e^2  −(1/4)e^(−2) )),(((3/4)e^2 −(3/4)e^(−2)                (1/4)e^2  +(3/4)e^(−2) )) )  we use the same way to find e^(−A)  =Σ_(n=0) ^∞  (((−A)^n )/(n!))
eA=n=0Ann!=n=01n!(3.2n+(2)n42n(2)n434(2n(2)n)2n+3(2)n4)=(34n=02nn!+14n=0(2)nn!14n=02nn!14n=0(2)nn!34n=02nn!34n=0(2)nn!14n=02nn!+34n=0(2)nn!)=(34e2+14e214e214e234e234e214e2+34e2)weusethesamewaytofindeA=n=0(A)nn!

Leave a Reply

Your email address will not be published. Required fields are marked *