Menu Close

Let-a-1-a-2-a-3-be-an-arithmethic-progression-of-positive-real-numbers-Then-1-a-1-a-2-1-a-2-a-3-1-a-n-1-a-n-A-n-1-a-1-a-n-




Question Number 142865 by EnterUsername last updated on 06/Jun/21
Let a_1 , a_2 , a_3 , ... be an arithmethic progression of  positive real numbers. Then         (1/( (√a_1 )+(√a_2 )))+(1/( (√a_2 )+(√a_3 )))+∙∙∙+(1/( (√a_(n−1) )+(√a_n )))=  (A) ((n+1)/( (√a_1 )+(√a_n )))                          (B) ((n−1)/( (√a_1 )+(√a_n )))  (C) (n/( (√a_1 )+(√a_n )))                          (D) (n/( (√a_n )−(√a_1 )))
Leta1,a2,a3,beanarithmethicprogressionofpositiverealnumbers.Then1a1+a2+1a2+a3++1an1+an=(A)n+1a1+an(B)n1a1+an(C)na1+an(D)nana1
Commented by som(math1967) last updated on 07/Jun/21
(B)((n−1)/( (√a_1 )+(√a_n )))  □
(B)n1a1+an◻
Answered by mr W last updated on 06/Jun/21
(1/( (√a_1 )+(√a_2 )))+(1/( (√a_2 )+(√a_3 )))+∙∙∙+(1/( (√a_(n−1) )+(√a_n )))  =(((√a_2 )−(√a_1 ))/( a_2 −a_1 ))+(((√a_3 )−(√a_2 ))/( a_3 −a_2 ))+∙∙∙+(((√a_n )−(√a_(b−1) ))/( a_n −a_(n−1) ))  =(((√a_n )−(√a_1 ))/d)  =((((√a_n )−(√a_1 ))(n−1))/(a_n −a_1 ))  =((n−1)/( (√a_n )+(√a_1 )))  ⇒answer (B)
1a1+a2+1a2+a3++1an1+an=a2a1a2a1+a3a2a3a2++anab1anan1=ana1d=(ana1)(n1)ana1=n1an+a1answer(B)
Commented by EnterUsername last updated on 06/Jun/21
a_n =a_1 +(n−1)d.   Thank you, Sir
an=a1+(n1)d.Thankyou,Sir

Leave a Reply

Your email address will not be published. Required fields are marked *