Menu Close

Let-A-a-b-c-d-Find-a-condition-on-a-b-c-d-so-that-A-n-1-A-n-nA-n-N-A-n-1-A-n-nA-A-n-A-n-1-n-1-A-A-n-1-A-n-2-n-2-A-A-n-2-A-n-3-n-3-A-A-4-A-3-3A-A-3-A-2-2A




Question Number 3566 by Yozzii last updated on 15/Dec/15
Let A= ((a,b),(c,d) ). Find a condition on  a,b,c,d so that A^(n+1) −A^n =nA, n∈N.    A^(n+1) −A^n =nA  A^n −A^(n−1) =(n−1)A  A^(n−1) −A^(n−2) =(n−2)A  A^(n−2) −A^(n−3) =(n−3)A  ...  A^4 −A^3 =3A  A^3 −A^2 =2A  A^2 −A=A     So, A^(n+1) −A=(n+n−1+n−2+...+3+2+1)A  A^(n+1) =A+((n(n+1))/2)A  A^(n+1) =((n^2 +n+2)/2)A  A^n =(((n−1)^2 +n+1)/2)A  A^n =((n^2 −n+2)/2)A  (n≥1), A= ((a,b),(c,d) ) .
LetA=(abcd).Findaconditionona,b,c,dsothatAn+1An=nA,nN.An+1An=nAAnAn1=(n1)AAn1An2=(n2)AAn2An3=(n3)AA4A3=3AA3A2=2AA2A=ASo,An+1A=(n+n1+n2++3+2+1)AAn+1=A+n(n+1)2AAn+1=n2+n+22AAn=(n1)2+n+12AAn=n2n+22A(n1),A=(abcd).
Commented by prakash jain last updated on 15/Dec/15
A^2 = (((a^2 +bc),(ab+bd)),((ac+cd),(bc+d^2 )) ) = (((2a),(2b)),((2c),(2d)) )  a^2 +bc=2a   (1)  ab+bd=2b   (2)  ac+cd=2c   (3)  bc+d^2 =2d   (4)  4 variables and 4 equation  from (1) and (4)  a^2 −d^2 =2(a−d)⇒a=d or a+d=2  case 1 a=d  from (2) db+bd=2b⇒b=0 or d=1         1a. case b=0          from (4) d^2 =2d⇒d=0 or d=2              1aa∙ case d=0                 a=b=c=d=0   ....(A)              1ab. csse d=2                 a=d=2                ac+dc=2c⇒2(√2)c=2c⇒c=0                a=d=2, b=c=0    (B)          1b. case d=1               a=d=1, bc=1   ...(C)  case 2: a+d=2      b, c can take any vale (D)  To satiafy A^2 =2A solution are  (Sol A) a=b=c=d=0 this satisifies genral condtion  (Sol B) a=d=2, b=c=0        to be checked for higher powers.  (Sol C) a=d=1, cb=1        to be checked for higher powers.  (Sol D) b,c a, d=1−a       to be checked for higher powers.  Continue
A2=(a2+bcab+bdac+cdbc+d2)=(2a2b2c2d)a2+bc=2a(1)ab+bd=2b(2)ac+cd=2c(3)bc+d2=2d(4)4variablesand4equationfrom(1)and(4)a2d2=2(ad)a=dora+d=2case1a=dfrom(2)db+bd=2bb=0ord=11a.caseb=0from(4)d2=2dd=0ord=21aacased=0a=b=c=d=0.(A)1ab.cssed=2a=d=2ac+dc=2c22c=2cc=0a=d=2,b=c=0(B)1b.cased=1a=d=1,bc=1(C)case2:a+d=2b,ccantakeanyvale(D)TosatiafyA2=2Asolutionare(SolA)a=b=c=d=0thissatisifiesgenralcondtion(SolB)a=d=2,b=c=0tobecheckedforhigherpowers.(SolC)a=d=1,cb=1tobecheckedforhigherpowers.(SolD)b,ca,d=1atobecheckedforhigherpowers.Continue
Answered by prakash jain last updated on 15/Dec/15
A= ((2,0),(0,2) ) A^2 = ((4,0),(0,4) ) A^n = ((2^n ,0),(0,2^n ) )  does not satisfy general comdition.  so   a=b=c=d=0 is solution  a=d=2,b=d=0 is not solution.  Sol (C) and (D) to be checked.
A=(2002)A2=(4004)An=(2n002n)doesnotsatisfygeneralcomdition.soa=b=c=d=0issolutiona=d=2,b=d=0isnotsolution.Sol(C)and(D)tobechecked.
Answered by prakash jain last updated on 15/Dec/15
Actually there is an easier way.  A^2 =2A  A^3 −A^2 =2A  A^3 =4A  A^4 −A^3 =3A  A^3 ∙A−4A=3A  4A^2 −4A=3A  8A−4A=3A  ⇒a=b=c=d=0
Actuallythereisaneasierway.A2=2AA3A2=2AA3=4AA4A3=3AA3A4A=3A4A24A=3A8A4A=3Aa=b=c=d=0

Leave a Reply

Your email address will not be published. Required fields are marked *