Menu Close

Let-a-and-b-be-complex-numbers-representing-the-points-A-and-B-respectively-in-the-complex-plane-If-a-b-b-a-1-and-O-is-the-origin-Then-OAB-is-




Question Number 139055 by EnterUsername last updated on 21/Apr/21
Let a and b be complex numbers representing the points  A and B respectively in the complex plane.  If (a/b)+(b/a)=1 and O is the origin. Then ΔOAB is ?
LetaandbbecomplexnumbersrepresentingthepointsAandBrespectivelyinthecomplexplane.Ifab+ba=1andOistheorigin.ThenΔOABis?
Answered by MJS_new last updated on 22/Apr/21
(a/b)+(b/a)=1 ⇒ b=a((1/2)±((√3)/2)i)  a=p+qi ⇒ b=((p±(√3)q)/2)+((q∓(√3)p)/2)i  A= ((p),(q) ) ∧B= ((((p±(√3)q)/2)),(((q∓(√3)p)/2)) )  AO= (((−p)),((−q)) ) ∧ AB= (((−((p±(√3)q)/2))),((−((q∓(√3)p)/2))) )  cos α =((∣AO•AB∣)/(∣AO∣×∣AB∣))=(1/2) ⇒ α=(π/3)
ab+ba=1b=a(12±32i)a=p+qib=p±3q2+q3p2iA=(pq)B=(p±3q2q3p2)AO=(pq)AB=(p±3q2q3p2)cosα=AOABAO×AB=12α=π3
Commented by EnterUsername last updated on 22/Apr/21
A= ((p),(q) ) ∧B. I don′t understand
A=(pq)B.Idontunderstand
Commented by mr W last updated on 22/Apr/21
it means  A= ((p),(q) )  and B= ((((p±(√3)q)/2)),(((q∓(√3)p)/2)) )  ∧ means and  ∨ means or
itmeansA=(pq)andB=(p±3q2q3p2)meansandmeansor
Commented by EnterUsername last updated on 23/Apr/21
Ok thanks. I mistakened it for “the vector perpendicular to...”
Okthanks.Imistakeneditforthevectorperpendicularto
Commented by MJS_new last updated on 23/Apr/21
we use a^⇀ ⊥b^⇀  for this
weuseabforthis
Answered by mr W last updated on 22/Apr/21
say a=Ae^(αi)   say b=Be^(βi)   let k=(A/B), θ=α−β  (A/B)e^((α−β)i) +(B/A)e^(−(α−β)i) =1  ke^(θi) +(1/k)e^(−θi) =1  (k+(1/k))cos θ+(k−(1/k))sin θ i=1  ⇒(k+(1/k))cos θ=1  ⇒(k−(1/k))sin θ=0 ⇒ { ((k−(1/k)=0 ⇒k=1)),((sin θ=0 ⇒θ=nπ)) :}    with k=1:  (A/B)=1  cos θ=(1/2) ⇒θ=2nπ±(π/3)  ⇒ΔAOB is equilateral    with sin θ=0:  cos θ=±1  k+(1/k)=±1 ⇒no solution for k>0    therefore only possibility is  ΔAOB is equilateral triangle.
saya=Aeαisayb=Beβiletk=AB,θ=αβABe(αβ)i+BAe(αβ)i=1keθi+1keθi=1(k+1k)cosθ+(k1k)sinθi=1(k+1k)cosθ=1(k1k)sinθ=0{k1k=0k=1sinθ=0θ=nπwithk=1:AB=1cosθ=12θ=2nπ±π3ΔAOBisequilateralwithsinθ=0:cosθ=±1k+1k=±1nosolutionfork>0thereforeonlypossibilityisΔAOBisequilateraltriangle.
Commented by EnterUsername last updated on 22/Apr/21
Thanks Sir
ThanksSir

Leave a Reply

Your email address will not be published. Required fields are marked *