Menu Close

Let-a-and-b-be-two-numbers-x-be-the-single-arithmetic-mean-of-a-and-b-Show-that-the-sum-of-n-arithmetic-means-between-a-and-b-is-nx-




Question Number 11930 by 786786AM last updated on 05/Apr/17
Let a and b be two numbers, x be the single arithmetic mean of a and b.  Show that the sum of n arithmetic means between a and b is nx.
$$\mathrm{Let}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{be}\:\mathrm{two}\:\mathrm{numbers},\:\mathrm{x}\:\mathrm{be}\:\mathrm{the}\:\mathrm{single}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{n}\:\mathrm{arithmetic}\:\mathrm{means}\:\mathrm{between}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{is}\:\mathrm{nx}. \\ $$
Answered by ajfour last updated on 05/Apr/17
A_r = a+(((b−a))/((n+1)))r  Σ_(r=1) ^n A_r  = na+(((b−a))/((n+1))).((n(n+1))/2)              =na+((n(b−a))/2)              = ((n(a+b))/2) = nx .
$${A}_{{r}} =\:{a}+\frac{\left({b}−{a}\right)}{\left({n}+\mathrm{1}\right)}{r} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{A}_{{r}} \:=\:{na}+\frac{\left({b}−{a}\right)}{\left({n}+\mathrm{1}\right)}.\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={na}+\frac{{n}\left({b}−{a}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{{n}\left({a}+{b}\right)}{\mathrm{2}}\:=\:{nx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *