Menu Close

Let-a-b-0-Prove-that-1-4-2-a-2-b-1-a-1-b-4-a-b-4-a-b-




Question Number 140959 by loveineq last updated on 14/May/21
Let a,b ≥ 0. Prove that                      (1/4)∙(((2+a)(2+b))/((1+a)(1+b))) ≥ ((4−a−b)/(4+a+b))
$$\mathrm{Let}\:{a},{b}\:\geqslant\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\centerdot\frac{\left(\mathrm{2}+{a}\right)\left(\mathrm{2}+{b}\right)}{\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{b}\right)}\:\geqslant\:\frac{\mathrm{4}−{a}−{b}}{\mathrm{4}+{a}+{b}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Answered by MJS_new last updated on 14/May/21
this is easy  a, b ≥0 ⇒ 1+a>0∧1+b>0∧4+a+b>0  ⇒  (2+a)(2+b)(4+a+b)≥4(4−a−b)(1+a)(1+b)  ⇒  5a^2 b+6a^2 +5ab^2 +6b^2 ≥0  which is true since a, b ≥0
$$\mathrm{this}\:\mathrm{is}\:\mathrm{easy} \\ $$$${a},\:{b}\:\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{1}+{a}>\mathrm{0}\wedge\mathrm{1}+{b}>\mathrm{0}\wedge\mathrm{4}+{a}+{b}>\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{2}+{a}\right)\left(\mathrm{2}+{b}\right)\left(\mathrm{4}+{a}+{b}\right)\geqslant\mathrm{4}\left(\mathrm{4}−{a}−{b}\right)\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{b}\right) \\ $$$$\Rightarrow \\ $$$$\mathrm{5}{a}^{\mathrm{2}} {b}+\mathrm{6}{a}^{\mathrm{2}} +\mathrm{5}{ab}^{\mathrm{2}} +\mathrm{6}{b}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{true}\:\mathrm{since}\:{a},\:{b}\:\geqslant\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *