Menu Close

let-a-b-and-c-be-irrational-That-is-a-b-c-R-Q-Is-it-possible-for-c-a-b-




Question Number 3768 by Filup last updated on 19/Dec/15
let  a, b and c be irrational.  That is:  a, b, c∈R/Q    Is it possible for:  c=(a/b)?
$$\mathrm{let}\:\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{be}\:\mathrm{irrational}. \\ $$$${That}\:{is}: \\ $$$${a},\:{b},\:{c}\in\mathbb{R}/\mathbb{Q} \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{for}: \\ $$$${c}=\frac{{a}}{{b}}? \\ $$
Commented by 123456 last updated on 20/Dec/15
a=(√6),b=(√3),c=(√2)  (a/b)=((√6)/( (√3)))=(√2)=c
$${a}=\sqrt{\mathrm{6}},{b}=\sqrt{\mathrm{3}},{c}=\sqrt{\mathrm{2}} \\ $$$$\frac{{a}}{{b}}=\frac{\sqrt{\mathrm{6}}}{\:\sqrt{\mathrm{3}}}=\sqrt{\mathrm{2}}={c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *