Menu Close

Let-a-b-and-c-be-three-positive-real-numbers-Prove-that-a-b-c-a-2-bc-b-c-b-2-ca-c-a-c-2-ab-a-b-




Question Number 131465 by bramlexs22 last updated on 05/Feb/21
Let a,b and c be three positive real numbers  . Prove that a+b+c ≤ ((a^2 +bc)/(b+c))+((b^2 +ca)/(c+a))+((c^2 +ab)/(a+b))
Leta,bandcbethreepositiverealnumbers.Provethata+b+ca2+bcb+c+b2+cac+a+c2+aba+b
Answered by EDWIN88 last updated on 05/Feb/21
According to the identity ((a^2 +bc)/(b+c))−a=(((a−b)(a−c))/(b+c))  we can change our inequality into the form  x(a−b)(a−c)+y(b−a)(b−c)+z(c−a)(c−b)≥0  in which x=(1/(b+c)) , y=(1/(c+a)) ,z=(1/(a+b))  WLOG ,assume a≥b≥c then x≤y≤z
Accordingtotheidentitya2+bcb+ca=(ab)(ac)b+cwecanchangeourinequalityintotheformx(ab)(ac)+y(ba)(bc)+z(ca)(cb)0inwhichx=1b+c,y=1c+a,z=1a+bWLOG,assumeabcthenxyz