Menu Close

Let-a-b-be-non-zero-complex-numbers-and-z-1-z-2-be-the-roots-of-the-equation-z-2-az-b-0-If-there-exists-4-such-that-a-2-b-then-the-points-z-1-z-2-and-the-origin-A-form-an-equilateral-t




Question Number 139641 by EnterUsername last updated on 30/Apr/21
Let a, b be non-zero complex numbers and z_1 , z_2  be  the roots of the equation z^2 +az+b=0. If there exists  λ≥4 such that a^2 =λb, then the points z_1 , z_2  and the  origin  (A) form an equilateral triangle  (B) form a right-angled triangle, right angled at the            origin  (C) are collinear  (D) form an obtuse-angled triangle
Leta,bbenonzerocomplexnumbersandz1,z2betherootsoftheequationz2+az+b=0.Ifthereexistsλ4suchthata2=λb,thenthepointsz1,z2andtheorigin(A)formanequilateraltriangle(B)formarightangledtriangle,rightangledattheorigin(C)arecollinear(D)formanobtuseangledtriangle
Answered by MJS_new last updated on 30/Apr/21
λ≥4 ⇒ λ∈R  let k∈R∧λ=4+k^2   z^2 +az+(a^2 /(4+k^2 ))=0  z=−(a/2)(1±(k/( (√(k^2 +4)))))  1±(k/( (√(k^2 +4))))∈R∀k∈R ⇒ z_1  and z_2  are colinear
λ4λRletkRλ=4+k2z2+az+a24+k2=0z=a2(1±kk2+4)1±kk2+4RkRz1andz2arecolinear
Commented by EnterUsername last updated on 30/Apr/21
Thank you Sir. Can it also be done as           ((z_1 −z_0 )/(z_2 −z_0 ))=cosα+isinα.   Then proving that α=kπ, k∈Z
ThankyouSir.Canitalsobedoneasz1z0z2z0=cosα+isinα.Thenprovingthatα=kπ,kZ

Leave a Reply

Your email address will not be published. Required fields are marked *