Menu Close

Let-a-b-c-0-and-1-a-1-b-1-c-8-Prove-that-a-2b-1-a-b-1-b-2c-1-b-c-1-c-2a-1-c-a-1-8-




Question Number 143229 by loveineq last updated on 11/Jun/21
Let a,b,c ≥ 0 and (1+a)(1+b)(1+c) = 8.  Prove that                  (a+((2b+1)/(a+b+1)))(b+((2c+1)/(b+c+1)))(c+((2a+1)/(c+a+1))) ≥ 8
$$\mathrm{Let}\:{a},{b},{c}\:\geqslant\:\mathrm{0}\:\mathrm{and}\:\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{b}\right)\left(\mathrm{1}+{c}\right)\:=\:\mathrm{8}. \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+\frac{\mathrm{2}{b}+\mathrm{1}}{{a}+{b}+\mathrm{1}}\right)\left({b}+\frac{\mathrm{2}{c}+\mathrm{1}}{{b}+{c}+\mathrm{1}}\right)\left({c}+\frac{\mathrm{2}{a}+\mathrm{1}}{{c}+{a}+\mathrm{1}}\right)\:\geqslant\:\mathrm{8}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *