Let-a-b-c-0-and-a-b-c-1-Prove-that-1-a-2-1-1-b-2-1-1-c-2-1-5-2- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 142577 by loveineq last updated on 02/Jun/21 Leta,b,c⩾0anda+b+c=1.Provethat1a2+1+1b2+1+1c2+1⩾52 Answered by ajfour last updated on 02/Jun/21 l.h.s=1/aa+1a+1/bb+1b+1/cc+1c=3−(aa+1a+bb+1b+cc+1c)⩾3−12(a+b+c)⩾52asa+1a⩾2ifa>0. Commented by loveineq last updated on 02/Jun/21 Butthiscannotexplainthatequalityholdsiff(a,b,c)=(0,0,1) Answered by 1549442205PVT last updated on 03/Jun/21 i)if(a,b,c)∈A={(0,0,1),(0,1,0),(1,0,0)}wehaveequalityoccursifoneofthreenumbersequaltozeroforexamplec=0thenweneedprovefora+b=1:1a2+1+1b2+1⩾32⇔2(a2+b2+2)⩾3(a2b2+a2+b2+1)⇔3a2b2+a2+b2⩽1=(a+b)2=a2+b2+2ab⇔3a2b2−2ab⩽0⇔ab(3ab−2)⩽0thatistruebecause3ab⩽4ab⩽(a+b)2=1<2ii)Considera,b,c−≠0.Then1a2+1+1b2+1+1c2+1⩾52⇔−(1a2+1+1b2+1+1c2+1)⩽−52⇔3−(1a2+1+1b2+1+1c2+1)⩽3−52⇔a2a2+1+b2b2+1+c2c2+1⩽12(2)L.H.S(2)⩽a22a+b22b+c22c=a+b+c2=12⇔1a2+1+1b2+1+1c2+1⩾52(q.e.d)Theequalityoccursifandif(a,b,c)∈A Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-in-0-pi-sinx-sin-3-x-1-cos2x-Next Next post: x-R-2-1-t-2-R-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.