Menu Close

Let-a-b-c-0-and-a-b-c-1-Prove-that-1-a-2-1-1-b-2-1-1-c-2-1-5-2-




Question Number 142577 by loveineq last updated on 02/Jun/21
Let a,b,c ≥ 0 and a+b+c = 1.Prove that                                  (1/(a^2 +1))+(1/(b^2 +1))+(1/(c^2 +1)) ≥ (5/2)
Leta,b,c0anda+b+c=1.Provethat1a2+1+1b2+1+1c2+152
Answered by ajfour last updated on 02/Jun/21
l.h.s=((1/a)/(a+(1/a)))+((1/b)/(b+(1/b)))+((1/c)/(c+(1/c)))    =3−((a/(a+(1/a)))+(b/(b+(1/b)))+(c/(c+(1/c))))    ≥3−(1/2)(a+b+c) ≥ (5/2)  as  a+(1/a)≥2   if a>0.
l.h.s=1/aa+1a+1/bb+1b+1/cc+1c=3(aa+1a+bb+1b+cc+1c)312(a+b+c)52asa+1a2ifa>0.
Commented by loveineq last updated on 02/Jun/21
But this can not explain that equality holds iff (a,b,c)=(0,0,1)
Butthiscannotexplainthatequalityholdsiff(a,b,c)=(0,0,1)
Answered by 1549442205PVT last updated on 03/Jun/21
i)if (a,b,c)∈A={(0,0,1),(0,1,0),(1,0,0)}  we have equality occurs  if one of three numbers equal to zero  for example c=0 then we need prove  for a+b=1:(1/(a^2 +1))+(1/(b^2 +1))≥(3/2) ⇔  2(a^2 +b^2 +2)≥3(a^2 b^2 +a^2 +b^2 +1)⇔  3a^2 b^2 +a^2 +b^2 ≤1=(a+b)^2 =a^2 +b^2 +2ab  ⇔3a^2 b^2 −2ab≤0⇔ab(3ab−2)≤0 that  is true because 3ab≤4ab≤(a+b)^2 =1<2  ii)Consider a,b,c−≠0.Then     (1/(a^2 +1))+(1/(b^2 +1))+(1/(c^2 +1)) ≥ (5/2)⇔  −(   (1/(a^2 +1))+(1/(b^2 +1))+(1/(c^2 +1))) ≤− (5/2)⇔  3−(   (1/(a^2 +1))+(1/(b^2 +1))+(1/(c^2 +1)))≤3− (5/2)⇔     (a^2 /(a^2 +1))+(b^2 /(b^2 +1))+(c^2 /(c^2 +1))≤(1/2)(2)  L.H.S(2)≤(a^2 /(2a))+(b^2 /(2b))+(c^2 /(2c))=((a+b+c)/2)=(1/2)  ⇔   (1/(a^2 +1))+(1/(b^2 +1))+(1/(c^2 +1)) ≥ (5/2)(q.e.d)  The equality occurs if and if (a,b,c)∈A
i)if(a,b,c)A={(0,0,1),(0,1,0),(1,0,0)}wehaveequalityoccursifoneofthreenumbersequaltozeroforexamplec=0thenweneedprovefora+b=1:1a2+1+1b2+1322(a2+b2+2)3(a2b2+a2+b2+1)3a2b2+a2+b21=(a+b)2=a2+b2+2ab3a2b22ab0ab(3ab2)0thatistruebecause3ab4ab(a+b)2=1<2ii)Considera,b,c0.Then1a2+1+1b2+1+1c2+152(1a2+1+1b2+1+1c2+1)523(1a2+1+1b2+1+1c2+1)352a2a2+1+b2b2+1+c2c2+112(2)L.H.S(2)a22a+b22b+c22c=a+b+c2=121a2+1+1b2+1+1c2+152(q.e.d)Theequalityoccursifandif(a,b,c)A

Leave a Reply

Your email address will not be published. Required fields are marked *