Menu Close

Let-a-b-c-0-and-a-b-c-4-Prove-that-a-2-ab-b-2-a-b-4-2-b-2-bc-c-2-b-c-4-2-c-2-ca-a-2-c-a-4-2-1-2-




Question Number 141454 by loveineq last updated on 19/May/21
Let a,b,c ≥ 0 and a+b+c = 4. Prove that                  ((a^2 +ab+b^2 )/((a+b+4)^2 ))+((b^2 +bc+c^2 )/((b+c+4)^2 ))+((c^2 +ca+a^2 )/((c+a+4)^2 )) ≤ (1/2)
$$\mathrm{Let}\:{a},{b},{c}\:\geqslant\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+{c}\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} }{\left({a}+{b}+\mathrm{4}\right)^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} +{bc}+{c}^{\mathrm{2}} }{\left({b}+{c}+\mathrm{4}\right)^{\mathrm{2}} }+\frac{{c}^{\mathrm{2}} +{ca}+{a}^{\mathrm{2}} }{\left({c}+{a}+\mathrm{4}\right)^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *